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ABSTRACT 
The objective of this article is obtaining a mathematical model that describes the thermal problem in 
Grinding. A numerical solution of the equation of bi-dimensional heat diffusion is obtained. The 
numerical solution is made by the finite differences method, incorporating a scheme of fixed-point 
type Picard to solve the non-linealities introduced by the thermal properties of the material, which 
are considered depending on the temperature. The obtained models are also compared, and they are 
validated with information reported by another authors. 
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1. INTRODUCTION 
One of the most important problems that it is necessary to control in high precision mechanizing is the 
optimization of the distribution of superficial residual tensions that remain in the workpiece material and 
the heat distribution that is generated on it because of the process itself, as well as the interaction 
between both phenomenons. These phenomenons can change the microstructure and, consequently, the 
thermal and mechanical properties of the superficial layer of a material. Therefore, to assure a high 
degree of superficial finish in a piece, factors that influence on the development of residual tensions 
should be controlled. First, to find a solution to the problem of heat transfer, the method of finite 
differences will be use. This one has shown important results in the solution of engineering problems 
that, due to its geometry and / or boundary conditions have a great difficulty to give quickly an exact 
result for analytical solutions. This is a way to solve the thermal problem in a precise manner. 

 
2. HEAT TRANSFER PROBLEM IN GRINDING  
A surface grinding process is assumed to be two-dimensional. The head source profile is rectangular, 
moving along the positive direction of the X-axes on the work-piece surface, as show in Figure 1. For 
a stationary frame of reference (X-Y), the general governing equation is: 
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Figure 1a. Schematic diagram of a Grinding 
process. 

Figure 1b. A model of used thermal profile  
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If the frame of reference moves with a constant speed Vw, wich is equal to the table speed of the 
grinding machine, the equation (1) becomes. 
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where x is the horizontal coordinate of the moving reference frame. 
The boundary conditions in x=0, x=a, and y=0 (excepting in the zone where exist heat flow) are of 
heat flow by natural convection. In y=b there is a condition of constant ambience temperature. 
 
3. FINITE DIFFERENCE  
The numerical schema developed to predict the steady head flux is briefly described in this section. 
The relation between thermal conductivity and temperature, specific head capability and temperature 
for steel is non-linear. The expression for the thermal conductivity or head capability in terms of the 
temperature in many cases is not even differentiable. In such a situation, an iterative strategy of the 
Picard type can be used. According to this approach the thermal conductivity and head capability 
evaluated with temperature TP-1. Keeping in mind the previous consideration, the linear approximation 
can be constructed in the following way: given estimation for the value of the temperature Tp-1 find Tp 

as a solution of the problem (3). The finite difference method is applied for approach the differential, 
to the eq.(2). The domain is discretized by imposing a grid defined for a set of nodes xi and yj . Eq. (2) 
can be written in discrete form as following. 
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We introduced the equation in the computer using MAPLE software, and we developed an application 
to find the solutions to the problem. 
 
4. MODEL VERIFICATION 
 With the obtained application we have the temperature distribution in the geometry of the workpiece 
(Figure 2). In this way, we can know how the heat flow behaves in the material.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Temperature distribution around the 
geometry of the workpiece in the Grinding process. 
A- Isotherms distribution  
B- Temperatures distribution in the workpiece 
configuration. 
C- Temperature distribution in the external face of the 
workpiece (y=0). 
 

The obtained results are compared with those obtained by Liangchi et al. in [1]. In this case we are 
comparing the curve type and the entry and exit point of the tool in the workpiece during the process. 
The results of the comparison are shown below (Fig. 3 A and B). 
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A- Results of reference paper         B- Our results 

Figure 3. Temperature distribution on the workpiece surface (y=0). T+T∞ and x are undimensionals. 
 
How it can observe the curve configurations are very similar in booth cases. 
We also made another comparison. We compare our temperature distribution for various heat source 
velocities with the results obtained by P.N. Moulik et al. in [2]. 
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A- Results of reference paper         B- Our results 

Figure 4. Temperature distribution on the workpiece surface (y=0) for various heat source velocities.  
 
In the graphics, the obtained results are very similar. When the heat velocity is higher, the generated 
temperatures are lowers. We assumed that the difference between curve forms and temperature values 
is due to the nature of the materials and the scale used in x-axis. 
As we can observe, the results shown on the graphics are very similar in both cases. They represent 
the solution of the same problem by different methods. Using this positive conclusion as a start point, 
we tried to solve another problem: the temperature dependences that have the material properties. It 
means that the material of the workpiece has a thermal conductivity that changes with temperature. In 
the previous case, we assumed that thermal conductivity had a constant value. That’s what was 
considered in the papers that we used to compare our results, but it’s not too real. 
 
5. RESULTS INTRODUCING VARIABLES PROPERTIES 
We continued making tests to analyze the influence of the variation of thermal conductivity and head 
capability on the material behaviour in the grinding process. We obtain now the results that are shown 
in Figure 5. 
 
Comparing the results shown in Figure 2 and Figure 5 (Temperature distributions in case of constant 
(A) and variable (B) thermal conductivity) we can observe the following aspects: 
• The temperature value in the contact point between tool and workpiece is higher in the case (B). 
•  The curve form is very similar in case (A) and case (B). 
• The heat flow velocity influence is bigger in case (A). 
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Figure 5. Temperature distribution on the workpiece surface (y=0) for the variation of the thermal 
conductivity due to the variation of the temperature. 
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6. CONCLUSIONS 
We obtained an appropriate model to define the problem of heat transference in the Grinding process. 
The model incorporates the variables properties. 
Curves in cases of constant and variable thermal conductivity are very similar. They have the same 
morphology, but there are differences between the temperature values in the existence heat flow zone, 
it means that the properties variability is a very important factor. 
 
7. NOTATION 
X,Y qCo-ordinates Out heat flow in X direction sx
V qWorkpiece velocity Out heat flow in Y direction w sy
q α Heat flow  Thermal expansion coefficient 

T T(amb) L Temperature  Length of the contact zone between 
wheel and workpiece Ambience temperature 

q T(i) Entrance heat flow in x direction Temperature in i position in x 
direction 

ex

q K Entrance heat flow in y direction Thermal conductivity coefficient ey
a / b Total length / wide of the workpiece Temperature in i, j position in p 

iteration 
,
p

i jT  

xΔ  yΔ  X grid spatial size Y grid spatial size 
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