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ABSTRACT 
In this paper, the phenomenon of chatter vibration in metal cutting is investigated. For this purpose, a 
theoretical one-degree of freedom model of the vibrations generated in an orthogonal cutting process 
is developed. The dynamic cutting forces are strongly affected by the variations of the cutting process 
parameters, and the model is based on the mechanical theoretical prediction of the cutting zone. The 
developed model considers the variation of the rake angle, depth of cut, and a nonlinear model of the 
cutting force. An analysis of the differential equation obtained enables to determine the different types 
of oscillatory patterns that develop. A numerical solution by means of the fourth-order Runge-Kutta 
method allows the determination of the variation of the cutting force and rake angle as a function of 
time. 
Keywords: Surface roughness, chatter vibration. 
 
1. INTRODUCTION 
Chatter is a phenomenon that deserves attention in machining processes because it causes undesired 
effects. In this paper, the development of a theoretical one-degree of freedom model for predicting 
chatter is considered. Unlike the studies that have been previously carried out, this model is based on 
cutting parameters such as the rake angle, the cutting speed and the chip thickness. The paper is 
divided into the following sections: first, a description is given of how the model was developed; a 
numerical simulation using real values is then undertaken for model verification; this is followed by 
the presentation of the results and their discussion; and, finally, conclusions are drawn. 
 
2. PHYSICAL-MATHEMATICAL MODEL OF THE CUTTING PROCESS  
The model developed, for a turning process, is an orthogonal cutting model, in which the interface 
tool-piece is considered to have a single degree of freedom: movement only takes place in a 
horizontal direction (x-coordinate), (see Fig. 1). 

xmx cx kx F+ + = Δ&& &  (1) 

Equation (1) governs a dynamic system with a single degree of freedom, where m is the equivalent 
mass of the system, c is the damping coefficient, k is the stiffness constant and ∆Fx is the oscillating 
force component. The determination of the ∆Fx function is fundamental in the model since it is 
responsible for stimulating the system that causes dynamic behaviour. This function depends solely 
on the dynamic characteristics of the cut, and, therefore, chip thickness and cutting speed must be 
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functions of the cutting conditions. The undeformed chip thickness h, is an oscillating function that 
moves in a steady-state defined by h0. The external force Fx that moves the system, is the sum of two 
components: the steady-state component Fx0 plus an oscillating component called ∆Fx (Equation (2)).  
  
 

   

 

 

 

 

 

 

 

  Figure 1.Theoretical one-degree of freedom model         Figure 2. Kinematics of the Rake angle 
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If the dynamic force Fx and the Fx0 component are known, it is possible to determine ∆Fx,, which is 
responsible for generating the oscillations in one-dimensional mechanical systems. 

 0x x xF F FΔ = −  (2)
For a stationary process, Equation (3) describes the force in x direction, where Ft is the friction force 
between the material and the tool, Fn is the normal force between the tool and the material, and α is 
the rake angle. 

                   0 cos( ) sin( )x t nF F Fα α= −  (3)
Several authors [1-3] have carried out studies to determine stationary cutting parameters. In this 
paper, the results obtained by Toropov and others are used [2-3]. They serve to deduce the analytical 
expressions for determining the Fn y Ft , which act on the rake face of the tool. Equation (4) is 
obtained using these expressions, which makes it possible to evaluate the stationary force in x 
direction in an orthogonal cutting process.  α0 is the steady-state rake angle, e is chip width, which 
corresponds to the tool advance per revolution, Sf is the true fracture strength of the work material, 
and ε is the chip thickness coefficient. 

                         ( ) ( )0 01 cos sin
2x f oF eS h πε α 0α

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 
(4)

During an oscillating cutting process, the tool will follow a path defined by curve h, which oscillates 
around h0 (Fig. 1). The existence of an oscillating movement in the cutting tool gives rise to 
oscillations on the rake angle around the stationary value α0. Likewise, the angular motion that the 
tool undergoes may influence the shear angle. The relative movement of the tool in direction x is: 

0x h h= −  (5)
Isolating h from Equation (5), we obtain displacement h0 in addition to the displacement due to x 
oscillation, which is the independent variable in Equation (1). The cutting speed is a variable that is 
related to the changes experienced by the rake angle. As can be seen in Fig. 2, it is possible to deduce 
Expression (6) for the rake angle, where x&  is the speed of the oscillation in x direction, vc is the 
cutting speed and α is the rake angle rate. The difference between the steady-state rake angle and the 
rake angle is the rake angle rate, which is similar to the conditions described for un-deformed chip 
thickness (5). 
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Using these magnitudes, we can rewrite Equation (4), in which the component of the dynamic force is 
a slight oscillation that is approximately the same value as that for steady-state force Fx0. By replacing 
(5) and (6) in the force equation, (7) is obtained, similarly to how (4) is obtained. This method may be 
applied to predict the oscillating force, which is based on variables that are easy to define because 
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they are the variables in the machining process. Finally, based on (7), (4) and (2), the oscillating 
component of the force ∆Fx is obtained.  
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3. NUMERICAL SIMULATION 
Equation (1) is numerically solved by using ∆Fx (defined above). In order to do this, the fourth order 
Runge-Kutta numerical method is used. The conditions of cut and the constants of the differential 
equation correspond to the real values in a cutting process. In the differential equation, m = 0.1155 kg,  
c = 0.9 kg/s, y k = 589048 N/m. The equation is solved and the graphs are plotted using the values 
obtained. The graphs are presented and discussed in the following section. 
 
4.  RESULTS AND DISCUSSION 
The first simulation was carried out for studying the behaviour of the model. Figure 3 shows the 
oscillations of the system under different conditions.  
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                Figure 3. Model´s behaviour 

The first graph shows the model's behaviour when c is zero, as well as the force involved, for which a 
harmonic signal was obtained. The second graph shows the behaviour when the value of c is different 
from zero, for which a damping signal is obtained. In the following graph, the damping coefficient is 
zero, but ∆Fx is introduced, for which a signal generated by the self-excited vibration force can be 
observed. The last graph represents the developed model. Once the graphs had been analyzed, it was 
possible to state that the model behaves satisfactorily, making it possible to predict the self-excited 
oscillating behaviour. 

In order to study the effect of the different parameters e, ho, vc, α, on the model, simulations were 
carried out in which the different values were varied and their behaviour observed. When e was 
varied, a change in the amplitude of the oscillation was observed, which became greater when the 
value of e was increased. This change in the amplitude is bound to affect the surface quality. In 
addition, it was noticed that there was a change in the initial transition, so that when e increases, the 
steady-state takes place before (Fig. 4). 
 
The value of h0 was varied between 0.3 and 1 mm to demonstrate that its behaviour with respect to the 
amplitude and the steady-state is similar to the previous case (Fig 5). In the case of cutting speed (vc) 
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and the rake angle (α), simulations were carried out, which resulted in graphs that do not present 
appreciable variations for the finishing conditions. Thus, it is possible to conclude that these 
parameters do not significantly influence the proposed model. 
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  Figure 4. The response of the model to variation of the parameter  e    
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            Figure 5. The response of the model to variation of the parameter h0 

Finally, in order to study the influence of the initial condition on the model, simulations using 
different values of x(0) were carried out (Fig. 6). The initial condition in one of the simulations was 
100 times greater than in the other. We noticed that although the cutting conditions were varied, the 
model predicted an oscillation amplitude that did not depend on the initial condition.   
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                        Figure 6.  The response of the model to variation of the  initial condition 

4. CONCLUSIONS  
A model for predicting chatter based on the cutting parameters in machining processes was 
successfully constructed. It has been demonstrated that the tendencies in the model's behaviour are 
correct.  
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