
10th International Research/Expert Conference 
”Trends in the Development of Machinery and Associated Technology” 

TMT 2006, Barcelona-Lloret de Mar, Spain, 11-15 September, 2006 
 
 

MOTOR BEARING FAULT DETECTION VIA WAVELET  
PACKET DECOMPOSITION OF VIBRATION DATA 

 
Levent Eren 

Bahcesehir University 
Bahcesehir, Istanbul 

Turkey 
 

Fethi Işıksal 
Bahcesehir University 
Bahcesehir, Istanbul 

Turkey 

ABSTRACT 
Condition Monitoring plays an important role in maintenance of electric machinery. Analysis of 
motor vibration data is one of the most widely used techniques for bearing fault detection. A special 
implementation of filter banks is utilized to provide bearing fault detection via wavelet packet 
decomposition (WPD) of motor vibration data in this paper. 
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1. INTRODUCTION 
Fast Fourier transform (FFT) algorithms are used widely in frequency analysis of vibration data due to 
their low computational complexities. Fourier techniques are well suited for stationary signal analysis. 
However, bearing fault related vibration frequency components are often non-stationary waveforms 
due to varying load conditions and non-linear loads. The Fourier transform has a shortcoming in 
detecting the time locality of abrupt changes in the signal. Short time Fourier transform (STFT) 
provides one way to address this problem. This approach is useful when the transient signal energy 
is limited to a time window. However, the problem with this is that once the window size is 
selected, the time resolution becomes fixed. 
The wavelet transform (WT) provides an alternative to STFT in non-stationary signal processing [1]. 
The wavelet based methods are used in power quality event detection and classification [2-4] in 
addition to the calculation electrical quantities such as power, voltage, and current [5,6]. In contrast to 
the fixed analysis window size in the STFT, the WT uses longer windows for low frequencies and 
shorter windows for higher frequencies. It results in better frequency and time resolutions for low and 
high frequencies respectively [7]. But, WT does not have the frequency resolution required for 
frequency analysis. Finer frequency resolution may be achieved via the wavelet packet transform 
(WPT) [8]. Wavelet decomposition is achieved via filter banks in signal processing. Therefore, the 
type of filters being employed plays an important part in the overall computational complexity. It is 
crucial to select filters with minimal number of coefficients. In this study, the use of specialized 
elliptic equiripple IIR half-band filters is suggested in wavelet packet decomposition [9,10]. 
 
2. WAVELET PACKET DECOMPOSITION 
Wavelet theory today represents a collection of work done largely independently in various fields 
such as mathematics, physics, and engineering. Wavelets, filter banks, and multi-resolution signal 
analysis, which have been used independently in the fields of mathematics, signal processing, and 
computer vision respectively, have recently converged to form a single theory [7]. The wavelet 
transform (WT) provides an alternative to the short time Fourier transform (STFT) in non-stationary 
signal processing.  
Wavelet analysis provides improved signal processing for transient signal analysis. It results in better 
time localization in higher frequencies in return for poorer frequency resolution. Coifman, Meyer, and 
Wickerhauser introduced wavelet packet analysis to improve the poor frequency resolution at high 
frequencies. They basically generalized the link between multi-resolution and wavelets. Wavelet 
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packets analysis offers a more efficient decomposition for signals containing both transient and 
stationary components. The frequency separation obtained by wavelet packet decomposition is 
depicted in figure 1.  It is very similar to that of the STFT. 
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Figure 1. Frequency separation of signal by WPD 
 
The wavelet filter bank structure to accomplish such decomposition is depicted in figure 2. 
 

2

2

h*-k

g*-k

d0,k

d3
2,k

d2
2,k

2

2

h*-k

g*-k

d1
2,k

d4
2,k2

2

h*-k

g*-k

 
 

Figure 2. Wavelet packet decomposition via two-channel filter banks 
  
It should be noted that, d4

2k and d3
2k are in reversed order in the previous figure. This is due to the 

natural, or Paley, order produced by the algorithm. The algorithm may be easily modified to produce a 
sequence ordered wavelet packet analysis [8].  
 
3. CALCULATION OF WAVELET PACKET COEFFICIENTS 
Daubechies showed that the following equations can be used to numerically obtain wavelet and 
scaling coefficients. 

/ 2
, ( ) 2 (2 )j j

j k x x kψ ψ− −= −      (1) 

The wavelet coefficients for level j can be obtained from scaling coefficients from level j-1 using 
2 1,, ( )( ) n k j n

n
j k gx φ xψ − −=∑      (2) 

, 2, j k n k j n
n

f g fψ − −= 1,,φ∑      (3) 

The scaling coefficients for level j can be obtained from the scaling coefficients for level j-1 using 
2 1,, ( )( ) n k j n

n
j k hx φ xφ − −=∑      (4) 

, 2, j k n k j n
n

f h fφ − −= 1,,φ∑      (5) 

Where g and h are high-pass and low-pass filters respectively. The procedure can start by calculating 

1,, kf ψ  and 1,, kf φ  from 0,, nf φ  using equations 3 and 5 respectively. Then, the same procedure 
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is used until the level j is reached. In the case of wavelet packet decomposition, the wavelet bases, Wj, 

are decomposed into approximation spaces W0
j+1 and W1

j+1. The wavelet filter bank structure to 

accomplish such decomposition is depicted in figure 2. The wavelet packet coefficients, dp
j,k, can be 

used to calculate the rms value of any node (j,p). 

The wavelet packet coefficients, dp
j,k, can be used to calculate the rms value of any node (j,p). 

2
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rms j k
k

x j p d= ∑          (6) 

where  
0

2
1[ ] [ ] [2 ]p p

jj k k hd d+ = ∗ k       (7) 
and 

1
2 1
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jj k k hd d+

+ = ∗ k       (8) 
can be used repeatedly to obtain all the wavelet packet coefficients.  
 
4. TESTING 
The test motor is a 1 hp, 240 V, 50 Hz, 3000 rpm, two-pole induction motor. The test data is taken at 
no load condition. Cage defect is simulated by adding associated fault frequency components to the 
vibration data. The bearing cage defect characteristic vibration frequency at no load speed (3000 rpm) 
has the fundamental component at 20 Hz and the second harmonic at 40 Hz. Since the bearing related 
frequencies are modulated by the rotational frequency of 50 Hz, cage defect related frequencies would 
appear at 10, 30, 70, and 90 Hz in the frequency spectrum. In this case, the nodes 2, 5, 12, and 15 are 
selected for the analysis. These four nodes contain the 6.25-12.5 Hz and 31.25-37.5 Hz, 68.75-75 Hz, 
and 87.5-93.75 Hz frequency bands respectively. The wavelet packet coefficients for tests with a 
healthy and a faulty bearing are plotted in figures 3 and 4 respectively. 

 
Figure 3. Wavelet packet coefficients for a bearing with cage defect 

 
Comparing RMS values for wavelet packet coefficients depicted in figures 3 and 4, there is significant 
increase in the energy levels of bearing fault related frequency bands in the case of faulty bearing. 
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Figure 4. Wavelet packet coefficients for a healthy bearing 

 
5. CONCLUSION 
Motor bearing fault detection via wavelet packet decomposition of vibration data is studied in this 
paper. Since the bearing related vibration is non-stationary in nature, wavelet packet decomposition 
results in better analysis than commonly used Fourier methods.  
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