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ABSTRACT 
This paper present on simple method for multiplier-free finite impulse response (FIR) filter design 
based on the cascade of comb and linearly tapered comb filters. The stopband frequency determines 
the length of the comb filter. The method is used for narrowband filters where the passband frequency 
is not more than 0.1 of the stopband frequency. The sharpening technique is used to satisfy the desired 
stopband attenuation and the minimum passband ripple.  
Keywords: multiplier-free, FIR filter, Sharpening. 
 
1. INTRODUCTION 
There are two different digital filter types to satisfy a given specification: infinite impulse response 
(IIR) filters and finite impulse response (FIR) filters. In many applications it is often advantageous to 
employ FIR filters, than IIR filters, since they can be designed with exact linear phase and exhibit no 
stability problems [1]. However FIR filters have a computationally more intensive complexity 
compared to IIR filters with equivalent magnitude responses. Linear phase FIR filters of length N 
require (N+1)/2 multipliers, N-1 adders and N-1 delays. The complexity of the implementation 
increases with the increase in the number of multipliers. 
During the past several years, many design methods have been proposed to reduce the complexity of 
the FIR filters (reduce the number of multipliers). Another approach is a true multiplier-free design 
where the coefficients are reduced to simple integers or to simple combinations of powers of two, [2, 
3, 4].     Bhattacharya & Saramaki [4] state that “the major approach is based on optimizing the filter 
coefficient values such that the resulting filter meets the given specification with its coefficient values 
represented in minimum number of signed powers-of-two (MNSPT) or canonic signed digits (CSD) 
representations of binary digits.”  However “one may not assure or guarantee that the optimal solution 
will always be found under the given constraints” [4]. One alternative approach is based on 
combining simple sub-filters, [5]. 
In this article we present the simple method for an efficient multiplier-free FIR filter design based on 
linearly tapered comb filters. The rest of the paper is organized as follows. In next section we describe 
linearly tapered comb filters. The Section 3 describes the procedure which is illustrated with two 
examples.  
 
2. LINEARLY TAPERED COMB FILTER  
Consider a tapered comb filter with R-1 tapered elements on both sides, making the total number of 
tapered elements equal to 2(R-1). Let hM[n] and hR[n] denote the impulse responses of two comb 
filters of length M and  R, respectively 
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The general form of the impulse response of the linearly tapered comb (LTC) filter is given by the 
convolution of hM[n] and hR[n],  
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where * indicates the convolution. 
The corresponding transfer function is 
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Figures 1 (a) and (b) show the impulse responses of LTC filters for two values of R, 4 and 6, 
respectively, and M=16, while Figure 1 (c) presents the corresponding gains in dBs along with the 
gain of the comb filter hM[n]. Figure 1. (d) compares the gain responses of the cascade of  k=3 comb 
filters , and the cascade of two LTC filters with R1=4 and 6, and M=16. 
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                              c.  Gain responses.                                                d. Gain responses. 

Figure 1. LTC filters. 
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We can notice the following: 
• One can control the stopband attenuation by changing the values of R.  
• Additionally, LTC filters have the same zeros as the corresponding comb filter.  
• LTC filters are also multiplier-free. 
• The cascade of LTC filters has a lowpass characteristic with an improved stopband 

attenuation. 
 
The designed filter is the cascade  
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where N<M and R1=2. If filter (5) does not satisfy the specification we propose to apply the 
sharpening technique [6]. 
The designed filter is 
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where Sh{.} means sharpening. 
 
3. DESCRIPTION OF THE METHOD 
The filter specification is given by the normalized passband and stopband frequencies, passband 
ripple in dB and the stopband attenuation in dB. Usually the passband frequency is not more than 0.1 
of the stopband frequency. 
The method is described in the following steps: 
1. The  value of M is determined by the stopband  frequency as 
 

⎣ ⎦sM ω/2= ,                               (7)                             

where means the nearest integer. ⋅⎢ ⎥⎣ ⎦
2. i=0. 
3. i = i+1. If i = N, go to step 5. 
4. Chose the value Ri.  If the specification of the filter (5) is satisfied go to step 6. If not, go to step 3. 
5. Apply the sharpening technique starting with the simplest sharpening polynomials. Increase the 
order of the sharpening polynomial until the specification is satisfied. Otherwise increase the value of  
N and go to step 3. 
6. End of procedure. 
 
The method is illustrated with the following two examples. 
Example 1: 
The passband and the stopband frequencies are 0.02 and 0.2, respectively. The passband ripple is 
0.1dB, and the minimum stopband attenuation is 80 dB. 
The corresponding equiripple filter has an order  of  36 and has  18 multipliers. 
According to (7) we have M=10. 
We chose N=3, and we have R =2, R =3, and R =4. 1 2 3
The filter does not satisfy the specification. We apply the sharpening (3H2 3-2H ). The corresponding 
magnitude response is shown in Fig. 2 (a). The passband zoom, shown in Fig. 2 (b) demonstrates that 
the specification is satisfied. 
 
Example 2: 
In this example the specification is the following: The passband frequency and the passband ripple are 
0.038 and 0.05 dB, respectively. The stopband frequency is 0.41, while the minimum stopband 
attenuation is 70 dB. The corresponding equiripple filter has 9 multipliers. 
From (7) it follows M=5. We choose N=2. Using the sharpening polynomial 3H2-2H3 we get the 
magnitude response of the designed filter shown in Fig. 3. Note that the specification is satisfied. 
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              a. Overall magnitude response.                               b. Passband zoom. 
                                                              Figure 2. Example 1. 
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               a. Overall magnitude response.                               b. Passband zoom. 
                                                              Figure 3. Example 2. 
 
4. CONCLUSIONS 
The simple method for narrowband multiplier-free FIR filter design is presented. The designed filter 
is the cascade of linearly tapered comb filters. The corresponding length of the comb filter is 
determined by the stopband frequency. The number N of the cascaded LTC filters is typically less 
than M, where M is the length of the corresponding comb filter. If the cascade does not satisfy the 
given specification we use the sharpening technique.  
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