
10th International Research/Expert Conference
”Trends in the Development of Machinery and Associated Technology”

TMT 2006, Barcelona-Lloret de Mar, Spain, 11-15 September, 2006

SETTING AN OPTIMAL TRAJECTORY BY MEANS OF ANALYTIC
PROGRAMMING

Zuzana Oplatková, Ivan Zelinka
Faculty of Applied Informatics, Tomas Bata University in Zlín

Nad Stráněmi 4511, Zlín
Czech Republic

{oplatkova,zelinka}@fai.utb.cz

ABSTRACT
This paper deals with a novelty tool for symbolic regression, Analytic Programming (AP), which is
able to solve various problems from the symbolic regression domain. One of tasks for it can be setting
an optimal trajectory for artificial ant on Santa Fe trail which is main application of Analytic
Programming in this paper. In this contribution main principles of AP are described and explained.
In the second part of the article how AP was used for setting an optimal trajectory for artificial ant
according the user requirements is described in detail. An ability to create so called programmes, as
well as Genetic Programming (GP) or Grammatical Evolution (GE), is shown in that part. AP is a
superstructure of evolutionary algorithms which is necessary to run AP. In this contribution two
evolutionary algorithms – Simulated Annealing and Differential Evolution were used to carry
preliminary simulations out.
Keywords: Analytic Programming, symbolic regression, evolutionary algorithms

1. INTRODUCTION
This contribution demonstrates use of method which is independent on computer platform – Analytic
Programming. This tool is able to synthesize a new program from the basic set of elementary
functions as symbolic regression. The aim is to find an analytical formula which corresponds with
required tasks. The principles of this method can be found in [1 - 4].

2. PROBLEM DESIGN

2.1. Santa Fe trail
The Santa Fe trail, demonstrated in Fig. 3, was chosen from [5] to make a comparative study with the
same problem which was solved by Koza in Genetic Programming [6].

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Figure 1: Santa Fe trail

 673

The aim of the task is that an artificial ant should go through defined trail and eat all food what is
there.
The SantaFe trail is defined as a 32 x 31 fields where food is set out. In Fig. 1 a black field is food for
the ant. The grey one is basically the same as a white field but for clearness was used the grey colour.
The grey fields represent obstacles (fields without food on the road) for the ant. If there would not be
these holes the ant could go directly through the way. It would be enough to go and see before ant if
there is food. If yes ant would go straight and eat the bait. If not it would turn around and see where is
food and the cycle would repeat till the ant would eat the last bait.
But in real world robots have obstacles in their moving. Therefore also in this case such approach was
chosen. The first problem which ant has to overcome is the simple hole (position [8,27] in Fig. 3).
Second one is two holes in the line (positions [13,16] and [13,17]), or three holes ([17,15], [17,16],
[17,17]). Next problem is holes in the corners – one (position [13,8]], two ([1,8],[2,8]) and three holes
([17,15], [17,16], [17,17]).

2.2. Set of functions
The set of functions used for movements of the ant is following. As a set of variables GFS0 [4], i. e. in
the case of this article functions, which provide moving of an ant, without any argument which could
be add during the process of evolution.
The set consist of
GFS0 = {Left, Right, Move},
Where
GFS0 – a set of variables and terminals [4]
Left – function for turning around in the anticlockwise direction
Right – function for turning around in the clockwise direction
Move – function for moving straight and if a bait is in the field where the ant is moved, it is eaten.

This set of functions is not enough to make successfully a desired task. More functions are necessary.
Then a GFS2 and GFS3 were set up.
GFS2 = {IfFoodAhead, Prog2}
GFS3 = {Prog3}
Where the number in GFS means the arity of the functions inside, i.e. number of arguments which are
needed to be evaluated correctly. Arguments are added to those functions during evolution process
[8].
IfFoodAhead is a decision function – the ant controls the field in front of it and if there is food, the
function in the field for truth argument is executed, otherwise function in false position.
Prog2 and Prog3 are the same function in the principle. They do 2 or 3 functions in the same time.
These two functions were originally defined also in Koza’s approach [6] but in AP it is necessary
because of structure of generating the program.

2.3. Fitness function
The aim of the ant is to eat all food on the way. There are 89 baits. This is so called raw fitness. And
the value of cost function (1) is calculated as a difference between raw fitness and a number of baits
eaten by an ant [1] which went through the grid according to just generated way.

CV = 89 – NumberFood (1)
NumberFood - number of eaten baits by an ant according to synthesized way

The aim is to find such formula whose cost value is equal zero. To obtain an appropriate solution two
constraints should be set up into a cost function. One is a limitation concerned to number of steps. It is
not desired ant to go field by field in the grid. A requirement to the fastest way and the most effective
is desired. Then a limit of steps was equal to 600.

2.4. Used evolutionary algorithms
In this paper Differential Evolution (DE) and Simulated Annealing (SA) were used as evolutionary
algorithms. For detailed information see – [7, 8]

 674

3. EXPERIMENTAL RESULTS
The main idea is to show that DE and SA are able to solve such problems of symbolic regression –
setting a trajectory – by means of Analytic Programming.
As a reason of time consuming simulations until the printing this article were done 15 simulations for
each algorithm.
DE has all simulations with positive result. SA was not so successful, only 8 positive results.
Simulations are still in process.
The equation 2 shows one example of generated programs which was successful. All food was eaten.
It was the fastest way of the ant but one of longest records from number of commands point of view.
As simulations showed it can be stated that the smallest number of commands does not have to cause
the smallest number of steps. And vice versa, that small number of steps does not mean the small set
of commands.
The results once to cost function evaluation firstly. As you can see in Table 1 the lowest
number of cti 2 697 for SA and 9493 for DE.

 are c rned
cost fun on evaluations equals to

IfFoodAhead�IfFoodAhead�Move,

IfFoodAhead�Move, IfFoodAhead�Left, Move���,
Prog3�Right, IfFoodAhead�Move,

Prog3�IfFoodAhead�Move, Right�, Right,
IfFoodAhead�Move, IfFoodAhead�Prog2�

IfFoodAhead�Right, IfFoodAhead�IfFoodAhead�
Prog2�Move, Prog3�IfFoodAhead�

Prog3�Right, Left, Left�, Right�,
IfFoodAhead�Move, Right�, Prog2�Left,
Left���, Move�, Prog2�Move, Move���,

Prog2�Right, Move��, Right����, Move��(2)

 Table 1: Cost function evaluation for DE and SA
Cost Function Evaluation

DE SA
Minimum 9 493 2 697

Maximum 131 156 98 241

Average 69176 46 483

Second indicator depicts histogram of successful hits and the number of cost function evaluations for
each hit – Fig. 2 - 3. There are not included negative results.
Next point which we were interested in was a number of commands for the ant and number of steps
required to eat all baits (Table 2 - 3).

2 4 6 8 10 12 14
Hit

0
20000
40000
60000
80000

100000
120000

tsoC
noitcnuF

snoitaulavE

Figures: 2 - Histogram of DE algorithm

2 4 6 8Hit
0

20000

40000

60000

80000

100000

tsoC
noitcnuF

snoitaulavE

Figures 3: Histogram of SA algorithm

Table 2 – Number of commands

Number of leaves
(commands)

SOMA DE SA

Minimum 11 14 15
Maximum 50 50 50
Average 33 31 29

Table 3 – Number of steps

Number of steps

SOMA DE SA

Minimum 396 387 406
Maximum 606 597 605
Average 559 518 556

The minimal value of steps was 387. This result was found by DE algorithm.

 675

4. CONCLUSIONS
This contribution deals with a tool for symbolic regression. This study shows that this tool is suitable
not only for mathematical regression but also for setting of optimal trajectory for artificial ant which
can be replaced by robots in real world, in industry.
To compare with standard GP, which is also a tool for symbolic regression [6], it can be stated on the
basic results above that AP can solve this kind of problems in shorter times as cost function
evaluations are counted. The aim of this study was not to show that AP is better or worse than GP (or
GE when compared) but that AP is also a powerful tool for symbolic regression with support of
different evolutionary algorithms.
The main object of the paper was to show that symbolic regression done by AP is able to solve also
cases where linguistic terms as for example commands for movement of artificial ant or robots in real
world are. Here simulations for 2 algorithms – DE and SA were done.
Reached results –15 from 15 for DE and 8 from 15 for SA which accomplished the required tasks thus
Analytic Programming is able to solve such kind of problems in symbolic regression. It is supposed
that the cost function is very complicated with quite a lot of local optima and therefore the Simulated
Annealing was not successful as DE was.
Future research is key activity in this field. The following steps are to finished simulations with GA
and to try some other class of problems to show that Analytic Programming is powerful tool as
Genetic Programming or Grammatical Evolution are.

5. ACKNOWLEDGEMENTS
This work was supported by the grant NO. MSM 7088352101 of the Ministry of Education of the
Czech Republic and by grants of Grant Agency of Czech Republic GACR 102/06/1132 and GACR
102/05/0271.

6. REFERENCES
[1] Zelinka I. 2002: Analytic programming by Means of Soma Algorithm. Mendel ’02, In: Proc. 8th

International Conference on Soft Computing Mendel’02, Brno, Czech Republic, 2002, 93-101., ISBN 80-
214-2135-5

[2] Zelinka I., Oplatkova Z. 2003: Analytic programming – Comparative Study. CIRAS’03, The second
International Conference on Computational Intelligence, Robotics, and Autonomous Systems, Singapore,
2003, ISSN 0219-6131

[3] Zelinka I.,Oplatkova Z, Nolle L. 2004b: Boolean Symmetry Function Synthesis by Means of Arbitrary
Evolutionary Algorithms-Comparative Study, ESM '2004, In: Proc. 18th European Simulation
Multiconference, Magdeburg, Germany 2004

[4] Zelinka I.,Oplatkova Z, Nolle L. 2005: Boolean Symmetry Function Synthesis by Means of Arbitrary
Evolutionary Algorithms-Comparative Study, International Journal of Simulation Systems, Science and
Technology, Volume 6, Number 9, August 2005, pages 44 - 56, ISSN: 1473-8031, online

, ISSN: 1473-804x http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/cover.htm
[5] Oplatkova Z. 2005, Optimal Trajectory of Robots Using Symbolic Regression, In: CD-ROM of Proc. 56th

International Astronautical Congress 2005, Fukuoka, Japan, 2005, paper nr. IAC-05-C1.4.07
[6] Koza J.R.: Genetic Programming, MIT Press, ISBN 0-262-11189-6, 1998
[7] Kirkpatrick S., Gelatt C. D., Vecchi M. P. 1983, Optimization by Simulated Annealing, Science, 13 May

1983, 220 (4598), p. 671 – 680
[8] Price K., Storn R. M., Lampinen J. A. 2005: Differential Evolution : A Practical Approach to Global

Optimization (Natural Computing Series) Springer; 1 edition , 2005, ISBN: 3540209506

 676

http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/cover.htm

