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ABSTRACT 
This paper deals with a novelty tool for symbolic regression, Analytic Programming (AP), which is 
able to solve various problems from the symbolic regression domain. One of tasks for it can be setting 
an optimal trajectory for artificial ant on Santa Fe trail which is main application of Analytic 
Programming in this paper. In this contribution main principles of AP are described and explained. 
In the second part of the article how AP was used for setting an optimal trajectory for artificial ant 
according the user requirements is described in detail. An ability to create so called programmes, as 
well as Genetic Programming (GP) or Grammatical Evolution (GE), is shown in that part. AP is a 
superstructure of evolutionary algorithms which is necessary to run AP. In this contribution two 
evolutionary algorithms – Simulated Annealing and Differential Evolution were used to carry 
preliminary simulations out. 
Keywords: Analytic Programming, symbolic regression, evolutionary algorithms 
 
1. INTRODUCTION 
This contribution demonstrates use of method which is independent on computer platform – Analytic 
Programming. This tool is able to synthesize a new program from the basic set of elementary 
functions as symbolic regression. The aim is to find an analytical formula which corresponds with 
required tasks. The principles of this method can be found in [1 - 4].  
 
2. PROBLEM DESIGN 
 
2.1. Santa Fe trail 
The Santa Fe trail, demonstrated in Fig. 3, was chosen from [5] to make a comparative study with the 
same problem which was solved by Koza in Genetic Programming [6]. 
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Figure 1: Santa Fe trail 
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The aim of the task is that an artificial ant should go through defined trail and eat all food what is 
there. 
The SantaFe trail is defined as a 32 x 31 fields where food is set out. In Fig. 1 a black field is food for 
the ant. The grey one is basically the same as a white field but for clearness was used the grey colour. 
The grey fields represent obstacles (fields without food on the road) for the ant. If there would not be 
these holes the ant could go directly through the way. It would be enough to go and see before ant if 
there is food. If yes ant would go straight and eat the bait. If not it would turn around and see where is 
food and the cycle would repeat till the ant would eat the last bait. 
But in real world robots have obstacles in their moving. Therefore also in this case such approach was 
chosen. The first problem which ant has to overcome is the simple hole (position [8,27] in Fig. 3). 
Second one is two holes in the line (positions [13,16] and [13,17]), or three holes ([17,15], [17,16], 
[17,17]). Next problem is holes in the corners – one (position [13,8]], two ([1,8],[2,8]) and three holes 
([17,15], [17,16], [17,17]). 
 
2.2. Set of functions 
The set of functions used for movements of the ant is following. As a set of variables GFS0 [4], i. e. in 
the case of this article functions, which provide moving of an ant, without any argument which could 
be add during the process of evolution. 
The set consist of  
GFS0 = {Left, Right, Move},  
Where 
GFS0 – a set of variables and terminals [4] 
Left – function for turning around in the anticlockwise direction 
Right – function for turning around in the clockwise direction 
Move – function for moving straight and if a bait is in the field where the ant is moved, it is eaten. 
 
This set of functions is not enough to make successfully a desired task. More functions are necessary. 
Then a GFS2 and GFS3 were set up.  
GFS2 = {IfFoodAhead, Prog2} 
GFS3 = {Prog3} 
Where the number in GFS means the arity of the functions inside, i.e. number of arguments which are 
needed to be evaluated correctly. Arguments are added to those functions during evolution process 
[8]. 
IfFoodAhead is a decision function – the ant controls the field in front of it and if there is food, the 
function in the field for truth argument is executed, otherwise function in false position. 
Prog2 and Prog3 are the same function in the principle. They do 2 or 3 functions in the same time. 
These two functions were originally defined also in Koza’s approach [6] but in AP it is necessary 
because of structure of generating the program. 
 
2.3. Fitness function 
The aim of the ant is to eat all food on the way. There are 89 baits. This is so called raw fitness. And 
the value of cost function (1) is calculated as a difference between raw fitness and a number of baits 
eaten by an ant [1] which went through the grid according to just generated way. 
 
CV = 89 – NumberFood          (1) 
NumberFood - number of eaten baits by an ant according to synthesized way 
 
The aim is to find such formula whose cost value is equal zero. To obtain an appropriate solution two 
constraints should be set up into a cost function. One is a limitation concerned to number of steps. It is 
not desired ant to go field by field in the grid. A requirement to the fastest way and the most effective 
is desired. Then a limit of steps was equal to 600.  
 
2.4. Used evolutionary algorithms 
In this paper Differential Evolution (DE) and Simulated Annealing (SA) were used as evolutionary 
algorithms. For detailed information see – [7, 8] 
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3. EXPERIMENTAL RESULTS 
The main idea is to show that DE and SA are able to solve such problems of symbolic regression – 
setting a trajectory – by means of Analytic Programming.  
As a reason of time consuming simulations until the printing this article were done 15 simulations for 
each algorithm. 
DE has all simulations with positive result. SA was not so successful, only 8 positive results. 
Simulations are still in process.  
The equation 2 shows one example of generated programs which was successful. All food was eaten. 
It was the fastest way of the ant but one of longest records from number of commands point of view. 
As simulations showed it can be stated that the smallest number of commands does not have to cause 
the smallest number of steps. And vice versa, that small number of steps does not mean the small set 
of commands. 
The results once to cost function evaluation firstly. As you can see in Table 1 the lowest 
number of cti 2 697 for SA and 9493 for DE. 

 are c rned 
cost fun on evaluations equals to 

 
IfFoodAhead�IfFoodAhead�Move,

IfFoodAhead�Move, IfFoodAhead�Left, Move���,
Prog3�Right, IfFoodAhead�Move,

Prog3�IfFoodAhead�Move, Right�, Right,
IfFoodAhead�Move, IfFoodAhead�Prog2�

IfFoodAhead�Right, IfFoodAhead�IfFoodAhead�
Prog2�Move, Prog3�IfFoodAhead�

Prog3�Right, Left, Left�, Right�,
IfFoodAhead�Move, Right�, Prog2�Left,
Left���, Move�, Prog2�Move, Move���,

Prog2�Right, Move��, Right����, Move��(2) 

 Table 1: Cost function evaluation for DE and SA 
Cost Function Evaluation  

DE SA 
Minimum 9 493  2 697 

Maximum 131 156 98 241 

Average 69176 46 483  

 
Second indicator depicts histogram of successful hits and the number of cost function evaluations for 
each hit – Fig. 2 - 3. There are not included negative results. 
Next point which we were interested in was a number of commands for the ant and number of steps 
required to eat all baits (Table 2 - 3). 
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Figures: 2 - Histogram of DE algorithm 
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Figures 3: Histogram of SA algorithm 

 

 
Table 2 – Number of commands 

Number of leaves 
(commands)  

SOMA DE SA 

Minimum 11 14 15 
Maximum 50 50 50 
Average 33 31 29  

Table 3 – Number of steps 

Number of steps 
 

SOMA DE SA 

Minimum 396 387 406 
Maximum 606 597 605 
Average 559 518 556  

 
The minimal value of steps was 387. This result was found by DE algorithm.  
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4. CONCLUSIONS 
This contribution deals with a tool for symbolic regression. This study shows that this tool is suitable 
not only for mathematical regression but also for setting of optimal trajectory for artificial ant which 
can be replaced by robots in real world, in industry. 
To compare with standard GP, which is also a tool for symbolic regression [6], it can be stated on the 
basic results above that AP can solve this kind of problems in shorter times as cost function 
evaluations are counted. The aim of this study was not to show that AP is better or worse than GP (or 
GE when compared) but that AP is also a powerful tool for symbolic regression with support of 
different evolutionary algorithms. 
The main object of the paper was to show that symbolic regression done by AP is able to solve also 
cases where linguistic terms as for example commands for movement of artificial ant or robots in real 
world are. Here simulations for 2 algorithms – DE and SA were done.  
Reached results –15 from 15 for DE and 8 from 15 for SA which accomplished the required tasks thus 
Analytic Programming is able to solve such kind of problems in symbolic regression. It is supposed 
that the cost function is very complicated with quite a lot of local optima and therefore the Simulated 
Annealing was not successful as DE was. 
Future research is key activity in this field. The following steps are to finished simulations with GA 
and to try some other class of problems to show that Analytic Programming is powerful tool as 
Genetic Programming or Grammatical Evolution are. 
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