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ABSTRACT 
In this paper the forming of the stiffness matrix of a mechanical system on the example of torsional 
vibration of a drive with flexible coupling and multi stage gear box has been described. First the stiffness 
matrix of the linearized system has been formed taking into account the mean values of stiffnesses of the 
elastic elements. For such a linearized system the eigenvalues have been computed. Forming of the 
stiffness matrix has been described as well for the case when the stiffnesses of the elastic elements are 
variable functions of the turning angle, i.e. of time. The flexible coupling stiffness is then a nonlinear 
function described by polynomial while the stiffnesses of teeth of the meshed gears are nonlinear and 
periodic functions that have been described by Fourier series with corresponding number of members. 
For the system with the stiffness matrix of which the elements are nonlinear functions of time the 
computation of the eigenvalues has been performed with the flexible coupling stiffness linearized in 
vicinity of working point and with stiffnesses of teeth of the meshed gears that have been varied with 
minimal, mean and maximal values. By comparison of eigenvalues computed for the mechanical system 
with variable stiffness matrix to the eigenvalues computed for the linearized system the influence of the 
elastic elements stiffness variability on the eigenvalues of torsional vibrations of the mechanical system 
has been estimated.  
Key words: gear teeth stiffness, stiffness matrix, eigenvalues of torsional  vibrations. 
 
1. INTRODUCTION 
Variable stiffness matrixes appear in mechanical systems in which the stiffnesses of the elastic 
connections among the inertial members or of the connections of those members to the surroundings are 
not constant, but in general arbitrary functions of mutual positions of the inertial members and time. An 
example of such a system is the drive of a working machine comprising flexible coupling and the multi 
staged gear box. The stiffness of that coupling is a nonlinear function of the turning angle and is 
described by an exponential function or a polynomial [1]. The stiffness of teeth of the meshed gears is a 
periodic function of the turning angle and is described by Fourier series [2]. When estimating the 
eigenvalues the stiffness of flexible coupling has been linearized in the vicinity of working point while 
the stiffnesses of teeth of the gears have been varied with minimal, mean and maximal values. 

2. TORSIONAL MODEL OF THE MECHANICAL SYSTEM 
The torsional model of the mechanical system, taken from [3] is shown in Figure 1a. That system 
consists of electric motor, flexible coupling and pairs of gears with straight teeth, having moments of 
inertia I1, I2, I13, I23, I24, I34, I35, I45+I46 and I56, planetary  part of the gear box (gears assumed as rigid) 
and the rotational mass of a working machine with moments of inertia I57 and I58. The system has in 
total 10 degrees of freedom and the generalised vector is:    

Tq },,,,,,,,,{}{ 58564535342423131211 ϕϕϕϕϕϕϕϕϕϕ=      (1) 
Model in Figure 1a can be reduced to the free torsional chain shown in Figure 1b. The mesh stiffness is 
represented with an elastic shaft between two discs. The generalized vector of the reduced model is: 
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Tq },,,,,,,,,{}{ 66152514241323121 θθθθθθθθθθ= ,      (2) 
while the relationship between generalized coordinates of both models are the next:  

111 θϕ = , 212 θϕ = , 3113 θϕ = , 321223 θϕ k−= , 411224 θϕ k−= ,  42231234 θϕ kk= ,  51231235 θϕ kk= ,  

5234231245 θϕ kkk−= ,   614534231256 θϕ kkkk= ,  64534231258 θϕ plkkkkk−= ,   (3)  
kij is a reduction factor and it is equal to the reciprocal of the gear ratio from the j-th to k-th shaft. 
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Moments of inertia of discs on model shown on 
Figure 1a in [kgm2] are: 
I1 = 17,  I2 =29.76 , I13 =0.68, I23=3.76, I24 = 0.5, 
I34 = 14.76, I35 = 1.48, I45+I46=93.81, 
I56+I57=692.8+68.34=761.14, I58 = 212836. 
The stiffnesses of the elastic connections on 
model shown on Figure 1a are: 
c11 = 0.22x106 Nm/rad,   c12 =4.01x106 Nm/rad, 
cv12=4.2x109 N/m, c21= 38.45x106 Nm/rad, 
cv23=3.14x109 N/m, c31=53.28x106 Nm/rad, 
cv34=3.15x109 N/m, cv45=5.20x109 N/m, 
c52=69.23x106 Nm/rad 
Reduction factors are: k12=z1/z2=27/34, 
k23=z3/z4=23/57, k34=z5/z6=22/78, 
k45=z7/z8=21/83, kpl=r9/2(r9+r10)=0.19512. 
Base radii of the gears [m] are: r1=0.125 , 
r2=0.125, r2=0.160, r3=0.105, r4=0.275, r5=0.140, 
r6=0.532, r7=0.190, r8=0.810 , r9=0.160, 
r10=0.250. 

   Figure 1. Torsional mechanical model of the drive with gear box 
By equalizing the kinetic and potential energy of the model in Figure 1a with the corresponding 
energies of the model in Figure 1b, the next reduced moments of inertia of  the discs are obtained:   
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and the reduced stiffnesses of the elastic connections as well: 

111 cc = ,  ,  ,   ,  ,  , 
,  ,  ,     (5)   

122 cc = 2
11212 rcc V

R
V = 21

2
123 ckc = 2

323
2

1223 rckc V
R
V = 31

2
23

2
124 ckkc =

2
534

2
23

2
1234 rckkc V

R
V = 2

745
2
34

2
23

2
1245 rckkkc V

R
V = 52

22
45

2
34

2
23

2
125 ckkkkkc pl=

      
3. STIFFNESSES OF THE ELASTIC CONNECTIONS 
The torsional stiffness of the flexible shafts is calculated using the well known formula from the strength of 
material. The torsional stiffness of the flexible coupling is calculated according to formula cT(ϕ)=dM(ϕ)/dϕ. 
The gear mesh stiffness is a periodic function of a turning angle. The mean value of that stiffness is computed 
as described in [4] taking into account a unit stiffness, a profile contact ratio and the width of the pinion. In 
such a manner the gear mesh stiffnesses have been computed in [3]. Graphic representation of the mesh 
stiffnesses of the gear pairs of the model in Figure 1a are developed in [3] and they are given in Figure 2. 
These mesh stiffnesses, since they are periodic, can be described by Fourier series: 
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π2T  - period of the function cv(t),  

cv0, An and Bn - constants, n – rotational speed of a pinion , z – number of teeth of the pinion 
Constants cv0, An i Bn are calculated according to Euler's formulas for coefficients of Fourier series: 
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Constant cv0 is the mean value of cv(t) and is equal to the stiffness mean value calculated as in [4]. 

 
Figure 2. Graphic presentation of gear mesh stiffnesses 

Variable mesh stiffness represents the parametric excitation [1,2,5] because of which instability in the 
working of the system can arise if the frequency of a certain harmonic of the excitation is close    to 
some of the natural frequencies or to some combination of those frequencies [6]. In such a case the 
most interesting are three types of instability: primary instability Ω≈2ωp, secondary instability Ω≈ωp 
and combined instability with Ω≈ωp+ωq, as in [6,7,8].  

 
4. FORMING OF INERTIA AND STIFFNESS MATRICES   
By calculating the partial derivations of kinetic and potential energy after generalized velocities and 
coordinates and by inserting them into the Lagrange's equations of 2nd kind the system of differential 
equations of torsional vibrations of the mechanical system has been obtained, with the matrix of inertia 

],,,,,,,,,[][ 66152514241323121 JJJJJJJJJJdijagM =      (7) 
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In this matrix the  are periodically variable gear mesh stiffnesses given by equation (6).  Vijc
 
5. EIGENVALUES OF THE MECHANICAL SYSTEM 
Using the Lagrange's equations of  the 2nd kind the differential equations of motion are obtained as: 

}{})]{([})]{([}]{[ QqtCqtDqM VV =++ &&&       (9) 
here are: [M ] matrix of inertia,  and  variable damping and stiffness matrix and Q - 
vector of  excitation forces. For free vibration the system of equations (9) is reduced to the system: 

)]([ tDV )]([ tCV

}0{}]{[}]{[ 0 =+ qCqM &&         (10)      

By introducing a new matrix  such that  and the new generalized coordinates ][R ][][][ RRM T=
}]{[}{ qR=φ , as has been done in [3], the system of equations is obtained in the form of: 

 ,                                                      (11)  }0{}]{[}]{[ =+ φφ AI &&

where  and , see [3]. Members of matrix [R] are 1]][[][ −= RRI 1
0 ]][[][][

1 −−

= RCRA T
ii JR = . 

Assuming solutions in form tq ωφ sin}~{}{ =  we come to the eigenvalues problem formulated as: 

 }0{}~]){[][( 2 =+− qAIω         (12) 
Using subroutines from program set Eispack  the eigenvalues of the mechanical system are computed. 
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6. RESULTS OF CALCULATION 
In the table are given the eigenvectors for the first six eigenfrequencies (ω2>0), computed with mesh 
stiffnesses mean values, and in Fig. 3. the modes of vibrations for those six eigenfrequencies. The 
mesh stiffnesses have been varied  with minimal cvmin, mean, cvsr and maximal stiffness cmax .    
                   1               2                       3                       4                5                         6                        7 
 ω2    .788538E-01      .356195E+03     .189720E+05     .581583E+06     .231791E+07      .606805E+07      .964405E+07
1      .545476E+00     .156283E+00    -.823398E+00     .690315E-02      .462874E-03      .582984E-04        -.151523E-04 
2      .721723E+00     .201068E+00     .512843E+00    -.402656E+00    -.109434E+00     -.362075E-01        .149683E-01 
3      .109096E+00     .302659E-01      .798532E-01     .198613E+00      .267300E+00      .240868E+00      -.159664E+00 
4      .203671E+00     .564884E-01      .149314E+00     .398134E+00     .519393E+00      .449484E+00      -.286749E+00 
5      .742522E-01      .205533E-01      .547881E-01     .195038E+00      .128632E+00     -.955014E-01        .187696E+00 
6      .162840E+00     .450372E-01      .120444E+00     .469778E+00     .217112E+00     -.428362E+00       .621663E+00 
7      .515794E-01      .142166E-01      .383167E-01     .178081E+00     -.579716E-01     -.184503E+00        -.645637E-01 
8      .115790E+00     .318197E-01      .862982E-01     .450716E+00     -.367584E+00    -.448153E+00       -.616199E+00 
9      .834635E-01      .226490E-01      .624565E-01     .382457E+00     -.666816E+00     .557798E+00        .294099E+00 
10    .270415E+00    -.962737E+00    -.359357E-02    -.705852E-03       .308682E-03      -.985576E-04       -.327286E-04 
 

7.   CONCLUSIONS 
• The variable teeth mesh stiffness has no influence on first 

two principal modes of vibrations. By these two  modes 
the rotors of motor and working machine and coupling 
have the biggest angular displacements.  

J JJ J J JJ J J JJ JJ J J JJ J J JJ JJ J J JJ J J J

• The variable teeth mesh stiffness has no significant  
influence on the other modes either but it has an influence 
on the  magnitudes of eigenfrequencies of each single 
mode. Those frequencies are considerably lower when 
computed with cvmin instead of cvsr and slightly higher  
when computed with cmax instead of cvsr. 

• Frequency ω6 is close to the frequency of second harmonic 
of mesh stiffness of gear pair z5/z6, while  frequency ω7 is 
close to the mesh frequency of gear pair z3/z4, etc.  

• The other frequencies are substantially higher and they 
can be placed in the vicinity of some harmonic of mesh 
stiffness or gear mesh frequency but because of small 
amplitudes more significant resonances are not possible. 

 
Fig. 3. First six  principal modes of  vibrations 
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In this paper the forming of the stiffness matrix of a mechanical system on the example of torsional vibration of a drive with flexible coupling and multi stage gear box has been described. First the stiffness matrix of the linearized system has been formed taking into account the mean values of stiffnesses of the elastic elements. For such a linearized system the eigenvalues have been computed. Forming of the stiffness matrix has been described as well for the case when the stiffnesses of the elastic elements are variable functions of the turning angle, i.e. of time. The flexible coupling stiffness is then a nonlinear function described by polynomial while the stiffnesses of teeth of the meshed gears are nonlinear and periodic functions that have been described by Fourier series with corresponding number of members. For the system with the stiffness matrix of which the elements are nonlinear functions of time the computation of the eigenvalues has been performed with the flexible coupling stiffness linearized in vicinity of working point and with stiffnesses of teeth of the meshed gears that have been varied with minimal, mean and maximal values. By comparison of eigenvalues computed for the mechanical system with variable stiffness matrix to the eigenvalues computed for the linearized system the influence of the elastic elements stiffness variability on the eigenvalues of torsional vibrations of the mechanical system has been estimated. 
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1. INTRODUCTION

Variable stiffness matrixes appear in mechanical systems in which the stiffnesses of the elastic connections among the inertial members or of the connections of those members to the surroundings are not constant, but in general arbitrary functions of mutual positions of the inertial members and time. An example of such a system is the drive of a working machine comprising flexible coupling and the multi staged gear box. The stiffness of that coupling is a nonlinear function of the turning angle and is described by an exponential function or a polynomial [1]. The stiffness of teeth of the meshed gears is a periodic function of the turning angle and is described by Fourier series [2]. When estimating the eigenvalues the stiffness of flexible coupling has been linearized in the vicinity of working point while the stiffnesses of teeth of the gears have been varied with minimal, mean and maximal values.

2. TORSIONAL MODEL OF THE MECHANICAL SYSTEM

The torsional model of the mechanical system, taken from [3] is shown in Figure 1a. That system consists of electric motor, flexible coupling and pairs of gears with straight teeth, having moments of inertia I1, I2, I13, I23, I24, I34, I35, I45+I46 and I56, planetary  part of the gear box (gears assumed as rigid) and the rotational mass of a working machine with moments of inertia I57 and I58. The system has in total 10 degrees of freedom and the generalised vector is:   
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(1)

Model in Figure 1a can be reduced to the free torsional chain shown in Figure 1b. The mesh stiffness is represented with an elastic shaft between two discs. The generalized vector of the reduced model is:
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while the relationship between generalized coordinates of both models are the next: 




[image: image4.wmf]1


11


q


j


=


, 

[image: image5.wmf]2


12


q


j


=


, 

[image: image6.wmf]31


13


q


j


=


, 

[image: image7.wmf]32


12


23


q


j


k


-


=


, 

[image: image8.wmf]41


12


24


q


j


k


-


=


,  

[image: image9.wmf]42


23


12


34


q


j


k


k


=


,  

[image: image10.wmf]51


23


12


35


q


j


k


k


=


,  

[image: image11.wmf]52


34


23


12


45


q


j


k


k


k


-


=


,   

[image: image12.wmf]61


45


34


23


12


56


q


j


k


k


k


k


=


,  

[image: image13.wmf]6


45


34


23


12


58


q


j


pl


k


k


k


k


k


-


=


, 

(3) 


kij is a reduction factor and it is equal to the reciprocal of the gear ratio from the j-th to k-th shaft.
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		Moments of inertia of discs on model shown on Figure 1a in [kgm2] are:


I1 = 17,  I2 =29.76 , I13 =0.68, I23=3.76, I24 = 0.5, I34 = 14.76, I35 = 1.48, I45+I46=93.81, I56+I57=692.8+68.34=761.14, I58 = 212836.


The stiffnesses of the elastic connections on model shown on Figure 1a are:


c11 = 0.22x106 Nm/rad,   c12 =4.01x106 Nm/rad, cv12=4.2x109 N/m, c21= 38.45x106 Nm/rad, cv23=3.14x109 N/m, c31=53.28x106 Nm/rad, cv34=3.15x109 N/m, cv45=5.20x109 N/m, c52=69.23x106 Nm/rad

Reduction factors are: k12=z1/z2=27/34, k23=z3/z4=23/57, k34=z5/z6=22/78, k45=z7/z8=21/83, kpl=r9/2(r9+r10)=0.19512.


Base radii of the gears [m] are: r1=0.125 , r2=0.125, r2=0.160, r3=0.105, r4=0.275, r5=0.140, r6=0.532, r7=0.190, r8=0.810 , r9=0.160, r10=0.250.



		   Figure 1. Torsional mechanical model of the drive with gear box





By equalizing the kinetic and potential energy of the model in Figure 1a with the corresponding energies of the model in Figure 1b, the next reduced moments of inertia of  the discs are obtained:  
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and the reduced stiffnesses of the elastic connections as well:
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3. STIFFNESSES OF THE ELASTIC CONNECTIONS

The torsional stiffness of the flexible shafts is calculated using the well known formula from the strength of material. The torsional stiffness of the flexible coupling is calculated according to formula cT(()=dM(()/d(. The gear mesh stiffness is a periodic function of a turning angle. The mean value of that stiffness is computed as described in [4] taking into account a unit stiffness, a profile contact ratio and the width of the pinion. In such a manner the gear mesh stiffnesses have been computed in [3]. Graphic representation of the mesh stiffnesses of the gear pairs of the model in Figure 1a are developed in [3] and they are given in Figure 2. These mesh stiffnesses, since they are periodic, can be described by Fourier series:
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here are: 
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 - period of the function cv(t), 


cv0, An and Bn - constants, n – rotational speed of a pinion , z – number of teeth of the pinion

Constants cv0, An i Bn are calculated according to Euler's formulas for coefficients of Fourier series:
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Constant cv0 is the mean value of cv(t) and is equal to the stiffness mean value calculated as in [4].
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Figure 2. Graphic presentation of gear mesh stiffnesses

Variable mesh stiffness represents the parametric excitation [1,2,5] because of which instability in the working of the system can arise if the frequency of a certain harmonic of the excitation is close    to some of the natural frequencies or to some combination of those frequencies [6]. In such a case the most interesting are three types of instability: primary instability Ω≈2ωp, secondary instability Ω≈ωp and combined instability with Ω≈ωp+ωq, as in [6,7,8]. 

4. FORMING OF INERTIA AND STIFFNESS MATRICES  

By calculating the partial derivations of kinetic and potential energy after generalized velocities and coordinates and by inserting them into the Lagrange's equations of 2nd kind the system of differential equations of torsional vibrations of the mechanical system has been obtained, with the matrix of inertia
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(7)


 and the stiffness matrix:
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In this matrix the 
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 are periodically variable gear mesh stiffnesses given by equation (6). 

5. EIGENVALUES OF THE MECHANICAL SYSTEM

Using the Lagrange's equations of  the 2nd kind the differential equations of motion are obtained as:
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here are: (
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 variable damping and stiffness matrix and Q - vector of  excitation forces. For free vibration the system of equations (9) is reduced to the system:
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By introducing a new matrix 
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, as has been done in [3], the system of equations is obtained in the form of:
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where 
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 we come to the eigenvalues problem formulated as:
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Using subroutines from program set Eispack  the eigenvalues of the mechanical system are computed.


6. RESULTS OF CALCULATION

In the table are given the eigenvectors for the first six eigenfrequencies (ω2>0), computed with mesh stiffnesses mean values, and in Fig. 3. the modes of vibrations for those six eigenfrequencies. The mesh stiffnesses have been varied  with minimal cvmin, mean, cvsr and maximal stiffness cmax .   


                   1              
2                       3                       4               
5                         6                        7


 ω2    .788538E-01      .356195E+03     .189720E+05     .581583E+06     .231791E+07      .606805E+07      .964405E+07

1      .545476E+00     .156283E+00    -.823398E+00     .690315E-02      .462874E-03      .582984E-04        -.151523E-04


2      .721723E+00     .201068E+00     .512843E+00    -.402656E+00    -.109434E+00     -.362075E-01        .149683E-01


3      .109096E+00     .302659E-01      .798532E-01     .198613E+00      .267300E+00      .240868E+00      -.159664E+00


4      .203671E+00     .564884E-01      .149314E+00     .398134E+00     .519393E+00      .449484E+00      -.286749E+00


5      .742522E-01      .205533E-01      .547881E-01     .195038E+00      .128632E+00     -.955014E-01        .187696E+00


6      .162840E+00     .450372E-01      .120444E+00     .469778E+00     .217112E+00     -.428362E+00       .621663E+00


7      .515794E-01      .142166E-01      .383167E-01     .178081E+00     -.579716E-01     -.184503E+00        -.645637E-01


8      .115790E+00     .318197E-01      .862982E-01     .450716E+00     -.367584E+00    -.448153E+00       -.616199E+00


9      .834635E-01      .226490E-01      .624565E-01     .382457E+00     -.666816E+00     .557798E+00        .294099E+00


10    .270415E+00    -.962737E+00    -.359357E-02    -.705852E-03       .308682E-03      -.985576E-04       -.327286E-04
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7.   CONCLUSIONS

· The variable teeth mesh stiffness has no influence on first two principal modes of vibrations. By these two  modes the rotors of motor and working machine and coupling have the biggest angular displacements. 

· The variable teeth mesh stiffness has no significant  influence on the other modes either but it has an influence on the  magnitudes of eigenfrequencies of each single mode. Those frequencies are considerably lower when computed with cvmin instead of cvsr and slightly higher  when computed with cmax instead of cvsr.


· Frequency ω6 is close to the frequency of second harmonic of mesh stiffness of gear pair z5/z6, while  frequency ω7 is close to the mesh frequency of gear pair z3/z4, etc. 


· The other frequencies are substantially higher and they can be placed in the vicinity of some harmonic of mesh stiffness or gear mesh frequency but because of small amplitudes more significant resonances are not possible.

Fig. 3. First six  principal modes of  vibrations
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