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ABSTRACT 
The work presents the analytical determination of stresses and deformations in a prismatic block of 
finite dimensions which has inside two cylindrical canals that form a “T” crossing ran by an under 
pressure fluid.. 
Keywords: hydraulic blocks, thick walls tubes. 
 
1. INTRODUCTION 
The modular hydraulic blocks have a wide spread in hydrostatic operated installations. A fundamental 
characteristic of these components refers to the interior cylindrical canals whose axes cross under a 
90° angle, offering thus many of circulation for the under pressure fluid. Among the very many 
constructive solution we chose the case of block which has inside two cylindrical canals forming a 
“T” crossing. The dimensional characteristics of the two canals and the block are shown in figure1.  
 
2. CALCULATION HYPOTHESES 
The stresses and deformations have been calculated for a “g” band, small thickness, figure 1, which is 
to be found across the symmetrical longitudinal plane of the block. We used the overlapping of effects 
device for two tubes having thick walls, corresponding to the 
two canals (having  and  as diameters  ).  1D 2D 2D
It follows: - tube I - which has the interior diameter  and the 
exterior diameter 

1D
B ; - tube II - which has the interior diameter 

 and the exterior diameter . For the thick walled tube I, 

the dimensional factor 

2D L

1
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Bh =   has values ranging within the 

interval  and for the thick walled tube II, the 

dimensional factor 

( 6,...5.2h1 ∈ )

2

L
2 D

h =  has values respecting the 

condition . For the “g” band in the case of tube II we 
used Lamé’s relations for the calculation of stresses and deformations.  For the band having “g” 
thickness in the case of tube I we adopted the following calculation hypothesis: 

6h2 >

 
 

Figur. 1. Modular hydraulic blocks 

- we considered the area corresponding to the diameter  as being the area of a ring with the interior 
diameter  and length  fit without construction in tube I, figure 2.a. By eliminating the 

2D

nD 2n DL =

 869



interior ring we obtain a thick walled tube having a constant diameter but with a pressure variation in 
the area of the ring which will be: 
 

 rii pp σΔ −=        (1) 
 

where: -  is interior pressure of the tube;  - ip rσ  is radial stress in the tube having the interior 

diameter  and the external one nD B  when radius 
2

D
r 1= . 

If the interior diameter of the ring grows up to the value BDn =  we obtain a gap corresponding to 
 of the canal (2), figure 2b. 2D

Taking into consideration [1,2] for the determination of the radial move we can obtain Lamé’s 
relation for the thick-walled tube, as follows: 

 
 

Figure 2. Thick walled tube 
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where )(C ζ  is a new unknown function. Function )(C ζ  can be determined provided that the axial 
force should be zero. The stresses zσ  can be determined as follows: 
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where: - εr  is radial strain; - εz  is axial strain; - εθ  is circumferential strain; - μ  is Poisson constant; - 
E  is modulus of Young. 
The axial force Nz can also be determined: 
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By using C’ value we can determine the strain εz. 
Knowing the values: 
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we can determine the total energy of the system which is equal to the sum between  the interior 
potential energy of deformation and the exterior forces potential. 
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The potential energy of deformation is: 
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where the specific energy W can be expressed by the help of relation: 
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The pressure force potential is: 
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By replacing the values of deformations and strains in the “eqn” (9),(10)  and integrating them in 
function of the ρ we can obtain the total energy of the system: On condition that the system’s energy 
should be minimum we obtain thus the solutions for functions A(ξ) and B(ξ). 
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3. CALCULATION OF STRESSES AND DEFORMATIONS 
The values α ,β, m, n depend on the k ratio and of Poisson’s coefficient. The constants C1…C8 can be 
determined from the limit conditions. Stresses σz, σr, σθ can be determined by using the relations: 
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For the tube II the stresses σz=0 and σr, σθ stresses can be determined by using Lamé’s relations. 
Taking into consideration the geometrical characteristics of the crossing we took into consideration 
only the segment limited by the A, B, C, D points, fig.1. by attaching a rectangular orthogonal system 
of axes, having the origin in the crossing point of the two canals (as shown in figure 1) we will have: 
 

1rx σσ −= ,   21y θθ σσσ += ,   2rz σσ −=      (13) 
 

where: − ,, 11r θσσ  are the stresses of tube I; - ,, 22r θσσ  are the stresses of tube II. 
Knowing the values of the stresses corresponding to the three directions for a point in plane ABCD, 
having the coordinates (x, z) we can determine the equivalent stresses by using Tresca’s criterion. 
 

),,min(),,max()( zyxzyxz,xe σσσσσσσ −=     (14) 
 
4. RESULTS AND CONCLUSIONS 
The stresses and deformations have been calculated considering the fact that at the interior of the two 
canals there is a fluid under a pressure of pi=1 [MPa]. 
Figures 3,4 show the stresses for the case when the dimensional factor is h1=2.5 and 3. 

 
Figure 4 Stresses when the dimensional factor 

is h1= 3 
 

Figure 3 Stresses when the dimensional factor is 
h1=2.5 
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2. CALCULATION HYPOTHESES
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Figur. 1. Modular hydraulic blocks


The stresses and deformations have been calculated for a “g” band, small thickness, figure 1, which is to be found across the symmetrical longitudinal plane of the block. We used the overlapping of effects device for two tubes having thick walls, corresponding to the two canals (having 
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It follows: - tube I - which has the interior diameter 
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. For the “g” band in the case of tube II we used Lam(’s relations for the calculation of stresses and deformations.  For the band having “g” thickness in the case of tube I we adopted the following calculation hypothesis:


- we considered the area corresponding to the diameter 
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 fit without construction in tube I, figure 2.a. By eliminating the interior ring we obtain a thick walled tube having a constant diameter but with a pressure variation in the area of the ring which will be:
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If the interior diameter of the ring grows up to the value 
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 of the canal (2), figure 2b.


Taking into consideration [1,2] for the determination of the radial move we can obtain Lam(’s relation for the thick-walled tube, as follows:
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where: 
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it results: 



[image: image33.wmf](


)


(


)


(


)


(


)


(


)


x


r


x


r


x


r


r


x


r


x


r


¶x


¶


C


ln


B


2


A


d


1


B


A


d


u


w


2


+


×


¢


-


×


¢


-


=


=


×


÷


÷


ø


ö


ç


ç


è


æ


×


¢


+


×


¢


-


=


×


÷


÷


ø


ö


ç


ç


è


æ


-


=


ò


ò



(4)

where 
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where: - (r  is radial strain; - (z  is axial strain; - ((  is circumferential strain; - (  is Poisson constant; - E  is modulus of Young.


The axial force Nz can also be determined:
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where: 
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For C’ we have: 
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By using C’ value we can determine the strain (z.


Knowing the values:
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we can determine the total energy of the system which is equal to the sum between  the interior potential energy of deformation and the exterior forces potential.

Et = U + Uf







(9)

The potential energy of deformation is:
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where the specific energy W can be expressed by the help of relation:
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The pressure force potential is:
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By replacing the values of deformations and strains in the “eqn” (9),(10)  and integrating them in function of the ( we can obtain the total energy of the system: On condition that the system’s energy should be minimum we obtain thus the solutions for functions A(() and B(().
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3. CALCULATION OF STRESSES AND DEFORMATIONS


The values ( ,(, m, n depend on the k ratio and of Poisson’s coefficient. The constants C1…C8 can be determined from the limit conditions. Stresses (z, (r, (( can be determined by using the relations:



[image: image48.wmf](


)


(


)


(


)


ú


û


ù


ê


ë


é


÷


÷


ø


ö


ç


ç


è


æ


+


-


×


+


×


¢


¢


-


÷


÷


ø


ö


ç


ç


è


æ


-


+


×


¢


¢


×


×


-


×


+


-


×


×


=


2


1


k


1


k


ln


k


ln


)


(


B


2


4


k


1


)


(


A


2


1


1


1


E


r


1


2


2


2


2


e


z


r


x


r


x


m


m


m


s


       (12.a)



[image: image49.wmf](


)


(


)


(


)


ú


û


ù


ê


ë


é


×


+


-


-


×


+


ú


û


ù


ê


ë


é


÷


÷


ø


ö


ç


ç


è


æ


+


-


×


+


×


¢


¢


-


÷


÷


ø


ö


ç


ç


è


æ


-


+


×


¢


¢


×


-


×


+


-


×


×


=


2


2


2


2


2


2


e


r


1


1


)


(


B


1


)


(


A


r


E


2


1


k


1


k


ln


k


ln


)


(


B


2


4


k


1


)


(


A


2


1


1


1


E


r


1


r


m


x


m


x


r


x


r


x


m


m


m


s


    (12,b)




[image: image50.wmf](


)


(


)


(


)


ú


û


ù


ê


ë


é


×


+


+


-


×


+


ú


û


ù


ê


ë


é


÷


÷


ø


ö


ç


ç


è


æ


+


-


×


+


×


¢


¢


-


÷


÷


ø


ö


ç


ç


è


æ


-


+


×


¢


¢


×


×


-


×


+


-


×


×


=


2


2


2


2


2


2


e


1


1


)


(


B


1


)


(


A


r


E


2


1


k


1


k


ln


k


ln


)


(


B


2


4


k


1


)


(


A


2


1


1


1


E


r


1


r


m


x


m


x


r


x


r


x


m


m


m


s


q


   (12,c)


For the tube II the stresses (z=0 and (r, (( stresses can be determined by using Lam(’s relations. Taking into consideration the geometrical characteristics of the crossing we took into consideration only the segment limited by the A, B, C, D points, fig.1. by attaching a rectangular orthogonal system of axes, having the origin in the crossing point of the two canals (as shown in figure 1) we will have:
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where: 
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 are the stresses of tube II.


Knowing the values of the stresses corresponding to the three directions for a point in plane ABCD, having the coordinates (x, z) we can determine the equivalent stresses by using Tresca’s criterion.
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(14)


4. RESULTS AND CONCLUSIONS

The stresses and deformations have been calculated considering the fact that at the interior of the two canals there is a fluid under a pressure of pi=1 [MPa].
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Figure 4 Stresses when the dimensional factor is h1= 3


Figures 3,4 show the stresses for the case when the dimensional factor is h1=2.5 and 3.
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Figure 3 Stresses when the dimensional factor is h1=2.5
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Figure 2. Thick walled tube
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