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ABSTRACT 
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1. THEORETICAL CONSIDERATIONS 
The progressive waves propagate with a constant velocity only if the properties, geometrical and 
physical, of the media are constant [2]. In case of an ultrasonic horn the cross section has a continuous 
variation along the its longitudinal axe. The general shape of a progressive wave is: 
 

( ) ( ) ( )kxtiexutxu −⋅= ω, ,     (1)  
 
where     ( ) kxttx −=ωϕ , ,     (2) 
 
is defined as phase function of a progressive sinusoidal wave that propagates in the positive sense of 
longitudinal axe. 
An analysing of wave propagation in nonhomogeneous media can cover the following aspects: a 
variation of the Young modulus E , a variation of the material density ρ , and a variation of the cross 
section  [1] and [3]. From all three media nonhomogenities the first two are more or less theoretical 
and the third is a practical one having the possibility to be checked by a set-up. 
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The equation that describes the wave propagation is given y: 
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.where  and  are two functions that describe the nonhomogenities of the propagation media: )(xf )(xg
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There were introduced the following assumptions: 
a) The solution of the wave propagation (3) admits Fourier transform. This yields to: 
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b) The media nonhomogenities are very small comparing with a homogeneous one and these can 

be described by the following functions: 
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where functions  and  are considered to carry out the needed conditions to be written in a 
Taylor expansion shape, in a point : 
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Introducing the solution (5) in wave equation (3) results: 
  

      0),()(),()( 2 =+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ∼
∼

ωω
∂

ω∂
∂
∂ xuxfxuxg

xx
,   (9) 

 or:     .    (10) 0)(')('")(
_

2
__

=++ uxfuxguxg ω
  
The solution ),(~ ωxu can be written as a Fourier expansion: 
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In case of the ultrasonic horns, with a variable cross section, there is a point where the section is 
maximum in one point , and it can be written the following relationship:  0x
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It is considered o solution  in the neighbourhood of a point . Then, the equation (9) 
becomes: 
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Dividing the above relationship by [ ] 0)(1 020 ≠+ xqg η  and taking considering the phase velocity of 
the waves in an homogeneous media (described by the constants  and ): 0f 0g
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and represents the new value of the propagation velocity of a wave that takes into consideration the 
nonhomogeneities of the media. 
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The solutions of the wave equation (13) are:  
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2. ACOUSTIC PULSE PROPAGATION IN A MEDIA WITH PERIODIC VARIABLE 

PROPERTIES 
 
It is considered a media with a periodic variation of the properties pλ  described by: 
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The wave propagation impose the previous analysis of some particularities of the model: 
 

a) Considering the variable change pxx λ+→ , the propagation equation (9) becomes: 
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with the following solutions dependence: 
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The condition 1=C  is necessary on a hand for having limited oscillations and, on the other hand it is 
considered that the media is a conservative one.  

b) Based on the above considerations, there must be considered the following periodical 
functions, with a period of pλ : 
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d) The main components of the wave have the following shapes: 
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The simulations were done in Labview and are presented in the next plots. 
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Figure 1. Graphical representation of the solution  for ),(
_

ωxu 1η  = 2η = η : a)real part; b) imaginary part 
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b) 
Figure 2 Gaussian pulse for 1η  = 2η =0,2 at the horn beginning (a), and at its end (b). 
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Figure 3. The Gaussian pulse evolution with initial conditions. 
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1. theoretical considerations

The progressive waves propagate with a constant velocity only if the properties, geometrical and physical, of the media are constant (2(. In case of an ultrasonic horn the cross section has a continuous variation along the its longitudinal axe. The general shape of a progressive wave is:
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is defined as phase function of a progressive sinusoidal wave that propagates in the positive sense of longitudinal axe.

An analysing of wave propagation in nonhomogeneous media can cover the following aspects: a variation of the Young modulus 
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, a variation of the material density 
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, and a variation of the cross section 
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 (1( and (3(. From all three media nonhomogenities the first two are more or less theoretical and the third is a practical one having the possibility to be checked by a set-up.


It was considered the case of a cross section variation with o periodicity of 

[image: image6.wmf]mm


500


for a horn, considered as a beam with the length of 
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The equation that describes the wave propagation is given y:




[image: image8.wmf](


)


÷


ø


ö


ç


è


æ


=


x


x


t


2


¶


¶


¶


¶


¶


¶


u


x


g


u


x


f


)


(


2


,



(3)

.where 
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There were introduced the following assumptions:


a) The solution of the wave propagation (3) admits Fourier transform. This yields to:
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b) The media nonhomogenities are very small comparing with a homogeneous one and these can be described by the following functions:
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where functions 
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where
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Introducing the solution (5) in wave equation (3) results:
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or:
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The solution 
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can be written as a Fourier expansion:
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In case of the ultrasonic horns, with a variable cross section, there is a point where the section is maximum in one point 
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It is considered o solution 
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 in the neighbourhood of a point 
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Dividing the above relationship by 
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 and taking considering the phase velocity of the waves in an homogeneous media (described by the constants 
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it is obtained:
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where:
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and 
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v


represents the new value of the propagation velocity of a wave that takes into consideration the nonhomogeneities of the media.


The solutions of the wave equation (13) are: 
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where 
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2. acoustic pulse propagation in a media with periodic variable properties

It is considered a media with a periodic variation of the properties 
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The wave propagation impose the previous analysis of some particularities of the model:

a) Considering the variable change 
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with the following solutions dependence:
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The condition 
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 is necessary on a hand for having limited oscillations and, on the other hand it is considered that the media is a conservative one. 


b) Based on the above considerations, there must be considered the following periodical functions, with a period of 
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c) The necessity to carry out the condition:
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d) The main components of the wave have the following shapes:
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The simulations were done in Labview and are presented in the next plots.
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		Figure 1. Graphical representation of the solution 
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		Figure 2 Gaussian pulse for 
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		Figure 3. The Gaussian pulse evolution with initial conditions.
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