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ABSTRACT 
This paper presents a new approach to the nitrogen compressibility factor calculation by means of 
sound speed experimental data. The approach is based on numerical integration of differential 
equations connecting speed of sound with other thermodynamic properties. The method requires 
initial conditions in the form of compressibility factor and heat capacity to be imposed at single 
temperature and pressure range of interest. It is tested with derived compressibility factor of nitrogen 
in pressure range form 0.3 MPa to 10.2 MPa and temperatures between 300 K and350 K. Calculated 
absolute average error is 0.018%, and maximum error better than 0.12%. 
Key words: nitrogen, speed of sound, compressibility factor, heat capacity 
 
1. INTRODUCTION 
There are several ways to derive thermodynamic properties from speed of sound data. I the first 
approach restrictive assumptions are not imposed in the form of an equation of state. Speeds of sound 
are simply combined with other observable properties in order to obtain one or more other properties 
through exact thermodynamic identities. This approach can be applied on single state or on area of 
thermodynamic surface [1]. 
In the second approach explicit or implicit parameterization of equation of state is assumed, whose 
parameters are fitted only to experimental speeds of sound. Resulting model can be used for 
determination of all other thermodynamic properties of phase inside area where assumed form of 
equation of state is valid [2]. 
Finally, some form of parameterization of equation of state can be assumed, but now with parameters 
fitted to sound speeds and to other thermodynamic data simultaneously. During elaboration of the 
method, functional form is optimized considering huge bank of terms out of which empirical form of 
equation of state can be constructed, and subset of selected property is found which represents the best 
the criteria imposed [3]. 
 
2. THEORY 
One of expressions connecting the speed of sound, u [m/s], with other thermodynamic properties has 
the form, Ref. [1]: 
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where: M [kg/mol] - molecular weight, R [J/mol K] - universal gas constant, T [K] - thermodynamic 
temperature, Z [-]- compressibility factor, p [Pa] - pressure, cp,m [J/mol K] - constant-pressure molar 
heat capacity. 
Pressure and temperature are thermal properties which are commonly measured experimentally. 
However, if one wants to calculate, for example, compressibility factors from speed of sound data, in 
some pressure and temperature range, equation (1) is not sufficient and another equation is necessary. 
For this purpose, the following equation from Ref. [1] is commonly used: 
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Now, we have two nonlinear partial differential equations  and one of them is of second order. In 
order to solve this system of differential equations one also has to impose two sets of initial 
conditions. They can be selected among Z, cp,m, and ( )pTZ ∂∂ . In our previous work (presented in 

Ref. [4]) we introduced method based on initial conditions Z and ( )pTZ ∂∂ . The approach proved 
good results, but on account of demanding initial conditions. Namely, if one wants to obtain reliable 
temperature derivative of compressibility factor, single temperature is not enough and two or more are 
necessary. Besides, these isotherms must be very closely spaced, which is quite demanding. For that 
reason, we decided to try to elaborate approach with Z and cp,m as initial conditions, although it was 
tried with liquid phase only and with limited success. 
General problem concerning this approach is unavailability of quality experimental heat capacities, 
measured with low uncertainty. As we could not succeed to trace such data we decided to derive them 
from state of the art density measurements. Having available accurate relation of compressibility 
factor of nitrogen from the equation, Ref. [5]: 
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where: N1 to N5 constants, τ = T0/T, (T0 = 273.15 K), δ = ρ/ρ0, (ρ0 =1 kg/m3), we derived heat 
capacities from it as the follows futher in the text. 
As equation (3) is explicit in T and ρ, we used the expression from the Ref. [1] to calculate constant-
volume molar heat capacity  
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where:  [J/mol K] - constant-volume molar heat capacity in ideal gas state, ρ [mol/m,
ig
v mc 3] - molar 

density. 
 
Partial derivative in the equation (4) we calculated using the equation (3) and following expression 

given in the Ref. [1] 
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Closed form relation obtained from equations (3) and (5) is 
 

( ), 1,25 0,5 2 2,5 2
2 3 40,3125 0,125 1,875v m

T

c
R N N Nτ δ τ δ τ

ρ
∂⎛ ⎞

= − − +⎜ ⎟∂⎝ ⎠
δ , (6) 

 
while, following expression for ideal gas molar heat capacity, from the Ref. [6], is used 
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According to the Ref. [7] relation between constant-pressure and constant-volume molar heat 
capacities is 
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In order to obtain constant-pressure molar heat capacity it is necessary to have temperature and 
pressure derivatives of compressibility factor. Thus, we obtained the following expressions: 
 

( ) ( ) ( ) ( )
( ) ( ),45.4

5,225,2
5444

5
5,5225,2

0
2

4

5,3225,0
0

2
3

25,325,1
02

2
1

TRZpNTRZTpN

TRZTpNTZRpTNTZRpNTZ

ii

iiip

−−

−−−=∂∂
  (9) 

 
( ) ( ) ( ) ( )

( ) ( ) ,42

2Z
43

5
5,4225,2

04

5,2225,0
03

25,225,1
021

TZRpNTRZpTN

TRZpTNTZRTNTZRNp

ii

iiiT

++

++=∂∂
   (10) 

 
where Ri = R/M, individual gas constant. 
Having the initial conditions obtained from the equations (3) to (10), and the experimental sound 
speeds, we can solve system of equations (1) and (2) numerically. 
Given Z and cp,m, the equation (1) is solved for ( ) pT0Z ∂∂ , and the equation (2) for ( )pT 2

0
2 Z ∂∂ , at 

initial temperature T0 and pressure range of interest. Now, we have enough information to calculate Z 
at temperature T1=T0+δT, from Taylor series (suffiviently to the second derivative 
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as well as ( pTZ 1∂∂ )  from expression 
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Having calculated (
1TpZ )∂∂  from the equation (10), and ( )

1
,p m T

c p∂ ∂  from Lagrange interpolating 

polynomial, Ref. [7], the procedure had been repeated until the end of temperature range was 
approached.  
 
3. RESULTS AND CONCLUSIONS 
The recommended method for deriving thermodynamic properties from speed of sound [8] is tested 
with derived compressibility factor of gaseous nitrogen in pressure range fom 0.3 MPa to 10.2 MPa, 
and temperatures between 300 K and 350 K. Fig. 1 gives an impression of error propagation in Z. 
Calculated absolute average error is 0.018%, and maximum error better than 0.12%. 

It must be noted that error increases as temperature decreases, which is expected, because 
compressibility factors at next temperature are calculated from values of Z and cp,m calculated at 
preceding temperature. Error increases with pressure too and, on account of that, upper limit of 
pressure is determined by maximum acceptable error. Generally, the method is very sensitive to initial 
conditions, and even very small error in initial conditions drastically cuts down pressure and 
temperature range in which Z may be calculated with acceptable error. This presumes application of 
approved methods of numerical interpolation (e.g. Lagrange interpolating polynomial in 3 to 5 points) 
for speeds of sound calculations at isobars and isotherms along which numerical integration is 
conducted. Computing with double precision is necessary in order to keep truncation error in 
acceptable limits. 
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Figure 1. Z vs. T, full line this work, ○ □ ∆ equation (3). 
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Finally, some form of parameterization of equation of state can be assumed, but now with parameters fitted to sound speeds and to other thermodynamic data simultaneously. During elaboration of the method, functional form is optimized considering huge bank of terms out of which empirical form of equation of state can be constructed, and subset of selected property is found which represents the best the criteria imposed [3].


2. THEORY


One of expressions connecting the speed of sound, u [m/s], with other thermodynamic properties has the form, Ref. [1]:
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where: M [kg/mol] - molecular weight, R [J/mol K] - universal gas constant, T [K] - thermodynamic temperature, Z [-]- compressibility factor, p [Pa] - pressure, cp,m [J/mol K] - constant-pressure molar heat capacity.


Pressure and temperature are thermal properties which are commonly measured experimentally. However, if one wants to calculate, for example, compressibility factors from speed of sound data, in some pressure and temperature range, equation (1) is not sufficient and another equation is necessary. For this purpose, the following equation from Ref. [1] is commonly used:
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Now, we have two nonlinear partial differential equations  and one of them is of second order. In order to solve this system of differential equations one also has to impose two sets of initial conditions. They can be selected among Z, cp,m, and 
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where: N1 to N5 constants,  = T0/T, (T0 = 273.15 K),  = /0, (0 =1 kg/m3), we derived heat capacities from it as the follows futher in the text.


As equation (3) is explicit in T and , we used the expression from the Ref. [1] to calculate constant-volume molar heat capacity 
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where: 
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 [J/mol K] - constant-volume molar heat capacity in ideal gas state,  [mol/m3] - molar density.


Partial derivative in the equation (4) we calculated using the equation (3) and following expression given in the Ref. [1]
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Closed form relation obtained from equations (3) and (5) is
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while, following expression for ideal gas molar heat capacity, from the Ref. [6], is used
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According to the Ref. [7] relation between constant-pressure and constant-volume molar heat capacities is 
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In order to obtain constant-pressure molar heat capacity it is necessary to have temperature and pressure derivatives of compressibility factor. Thus, we obtained the following expressions:
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where Ri = R/M, individual gas constant.


Having the initial conditions obtained from the equations (3) to (10), and the experimental sound speeds, we can solve system of equations (1) and (2) numerically.
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as well as 
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Having calculated 
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3. RESULTS AND CONCLUSIONS
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Figure 1. Z vs. T, full line this work, ○ □ ∆ equation (3).
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