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ABSTRACT 
The mathematics of composites materials requires the use of homogenization method .The governing 
equation of short fibers composite materials flow, treated as viscous compressible, are the Navier-
Stokes’partial derivative equations. Apply the homogenization method to these equations, then a 
variational procedure which permits the use of finite element method. At the end of paper we give a 
practical application of this approach.  
Keywords: Dirichlet-Neumann problem, Cauchy problem, macroscopic problem, microscopic 

problem, variational problem, temperature field, pressure, velocity field, energy 
conservation, mass conservation, finite element base, kinetic flow  

 
1.FORMULATION OF MATHEMATICAL MODEL 
The functional framework, this mathematical model harmonizes with is that of the Sobolev’ spaces. 
However, the followed applications of continuous and slow plastical deformations at constant 
pressure of composite materials with short fibers, permits the regularization of the solution and 
therefore the usual numerical approach. 
Suppose that the material occupies in R3 a bounded domain Ω, with the frontier ∂Ω, sufficiently 
smooth. Make the following assumptions about the operator of Henky-Nadai’s theory, attached to 
Dirichlet’s problem: 
10.Fix the space H(Ω)=L2(Ω), where L2(Ω) is the usual space of real functions at square sumable on       
Ω . Denote by , the Sobolev space: )(H2

0 Ω

( ) ( ) ( ){ }0u,CHuuH 22
0 =Ω∩Ω∈=Ω Ω∂   

where ( )Ω2C  is the class of functions on Ω,  2C
 

.Ω∂∪Ω=Ω Of course,  is linear and dense in ( )Ω2
0H ( )Ω2L . 

20.Let , ( ) ( )Ω→ 3HRD:P ( ) ( )Ω⊂ 3HPD  be an operator generally nonlinear and 

. ( )Ω→Ω 3H:f
Consider the homogenized Dirichet’s problem: 

( )Ω∈= 2
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where  are linear operators restricted at iΓ Ω∂ , that is  
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30. There is the Gateaux derivative ( )( ) huDP = ,  for all  ( ),Hh,u 1 Ω∈  linear with h and continuous 
with u in any two-dimensional hyperplane containing u, where ( ) ( )PIH m1 =Ω . 
40. , ( )( ) ( ) ( ) ( )ΩΩ 〉⋅〈=〉⋅〈 H12H21 h,huDPh,huDP

for all  and . ( )Ω∈ 1Hu 0
21 Mh,h ∈
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60.  ( ) 00P =

In these assumptios, if there is a solution , for the equation (1), then this solutions is unique 
and realizes the minimum of the functional. 

00 Mu ∈

( ) ( ) ( )Ω〉〈−φ= Hu,fuuF  (3)
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1

0
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and reverse, the minimum of the equation (3) on M0 is the solution of the equation (3). 
Here  denotes the scalar product in the Hilbert space H(Ω). In this paper, the functional F given by (3) is 
the base of the variational form, used in finite element method, the numerical method used in application. 

〉〈.,.

The problem (1)+(2) with conditions 10-60 is named the “fundamental Dirichlet problem”. In this case the 
nonlinear operator P is given by the Navier-Stokes’equations, where the coefficients are the homogenized 
ones, considering as the composite material with short fibers a viscous compressible fluid. 
The homogenized coefficients are obtained using an asymptotical development and the macroscopic 
equation [2]. 
If u=(u1, u2, u3), denotes the velocities’ field of a fluid’s particle, p the pressure, ρ, the density, f=(f1, 
f2, f3), the field of mass’ force, υ the cinematik viscosity, in the stationary case, the nonlinear operator 
P is given by: 

uP1u,uPu 3R Δυ−∇
ρ

+〉∇〈= ∗  
 

(5)

Observe that from the general expression of Pu it is missing the terms 
t
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and  is the usual “nabla” and Δ  is the Laplace’s operator applied to the vectorial field u. So, the 
Navier-Stokes’ equations is: 

∇
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The scalar product is that from the space L2 , (Ω), that is: 

( ) ( ) ( )dxxvxuv,u i

3

1i
iH ∑∫∫∫

= Ω

∗
Ω =〉〈 , x=(x1,x2,x3), u=(u1,u2,u3)T , v=(v1,v2,v3)T

 
(9) 
 

 
If Hn(Ω) is the finite-dimensional space, we search the finite element solution, then  has 
the form: 

( )Ω∈ nn Hu
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where { }kϕ  is the finite element global base attached to a discretization of the composite material 

domain 3R⊂Ω , and  is the vector of the velocities in knots attached to the 
global knot “k” of the same discretization. 

T
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The functional used to obtain the finite element discret variational form we get replacing in (4) u by 
un, and using (9), we have: 
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and 
( ) ( ) ( )

∗
Ω〉〈−Φ= Hnnn u,fuuF  (12)  

 
Finally, we obtain the finite element variational equation vanishing the partial derivatives of Fn in 
respect with all of velocities in knots. 
Of course, a finite element procedure of local type can be apllied vanishing the partial derivatives of 
the functional Ф with respect to the nodal velocities. 
 
2.APPLICATION :SIMULATION OF THE DISCONTINUOUS COMPOSITE FLUID FLOW 
The analyses of the melt plastic material in injection molded can be of the type: 

• Full flow 
• Filling only 
• Runner balance 
• Molding window 
• Gate location 

In this paper we used only the first and the second option analysis. In order to analyze the flow of 
plastic material during it’s injection in the mold it’s necessary to cover several stages;(fig 1) 

 

 
Figure1. Program files / moldflow plastics 

 
1. The import of 3D models of the piece(test tube) 
2. The discretization of geometrical model (New Mesh) 
3. The selection of the boundary conditions  
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4. Stualysis Preparation Wizard 
In this simulating we’ll obtain the following results: 

1. Fill pressure 
2. The flow front temperature  

 
The fill pressure (fig.2) presents the pressure distribution during the material flow. The pressure must 
be zero at the end of any flow trajectories and at the end of flow. Usually, the maximum pressure of 
injection is approximate 200 Mpa. 

 

 

Figure 2. The fill pressure diagram Figure 3. The flow fronts temperature diagram 
 
The diagram of the flow fronts temperature(fig.3) presents the temperature distribution when the flow 
front reaches a specified point. The graphe can be obtaind at the end of the analysis or at a specified 
time during the analysis. Ts recomanded a small variation of the flow fronts temperature from the first 
point of the cavity until the last filled point. 
 
3.CONCLUSIONS 
This paper develops a mathematical modelling of injection-molded parts with complex geometry 
using  the homogenization method. For the numerical procedure we use the finite element method. 
The paper concludes with a numerical example. 
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The scalar product is that from the space L2 , (Ω), that is:
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Finally, we obtain the finite element variational equation vanishing the partial derivatives of Fn in respect with all of velocities in knots.

Of course, a finite element procedure of local type can be apllied vanishing the partial derivatives of the functional Ф with respect to the nodal velocities.

2.APPLICATION :SIMULATION OF THE DISCONTINUOUS COMPOSITE FLUID FLOW

The analyses of the melt plastic material in injection molded can be of the type:


· Full flow


· Filling only


· Runner balance


· Molding window


· Gate location


In this paper we used only the first and the second option analysis. In order to analyze the flow of plastic material during it’s injection in the mold it’s necessary to cover several stages;(fig 1)
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Figure1. Program files / moldflow plastics

1. The import of 3D models of the piece(test tube)


2. The discretization of geometrical model (New Mesh)


3. The selection of the boundary conditions 


4. Stualysis Preparation Wizard


In this simulating we’ll obtain the following results:


1. Fill pressure


2. The flow front temperature 


The fill pressure (fig.2) presents the pressure distribution during the material flow. The pressure must be zero at the end of any flow trajectories and at the end of flow. Usually, the maximum pressure of injection is approximate 200 Mpa.
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		Figure 2. The fill pressure diagram

		Figure 3. The flow fronts temperature diagram





The diagram of the flow fronts temperature(fig.3) presents the temperature distribution when the flow front reaches a specified point. The graphe can be obtaind at the end of the analysis or at a specified time during the analysis. Ts recomanded a small variation of the flow fronts temperature from the first point of the cavity until the last filled point.

3.CONCLUSIONS


This paper develops a mathematical modelling of injection-molded parts with complex geometry using  the homogenization method. For the numerical procedure we use the finite element method. The paper concludes with a numerical example.
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