11th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology" TMT 2007, Hammamet, Tunisia, 05-09 September, 2007.

STRUCTURE AND PROPERTIES OF SINTERED Ag-SnO₂ ELECTRICAL CONTACT MATERIALS

Nadežda M. Talijan Jasna T. Stajić-Trošić Institute of Chemistry, Technology and Metallurgy Njegoševa 12, 11000 Belgrade, Serbia

Dragana Živković Technical Faculty Bor, University of Belgrade, VJ 12, 19210 Bor, Serbia

ABSTRACT

The presented work covers part of experimental results of simultaneous study of microstructure, density, hardness and electrical conductivity of sintered electrical contact materials based of Ag- SnO_2 with 8.10 and 12 mass% SnO_2 . The mentioned characteristics were analyzed in the function of different sintering regimes and after additional mechanical treatment (forging and rolling). The influence of small addition of In_2O_3 (2.9 mass%) on the increase of dispersion of main oxide SnO_2 in Ag matrix is observed and presented also.

Keywords: Ag-SnO₂, electrical contact materials, powder metallurgy, structure, mechanical properties, electrical conductivity

1. INTRODUCTION

Due to their excellent electrical and mechanical properties the metal-oxide electrical contact materials of Ag-CdO type have been used for many years for different low voltage devices of contactor type [1]. Based on the EU regulative considering toxicity of most commonly used metal-oxide CdO, further investigations of electrical contact materials are directed towards replacement of the toxic and harmful CdO with non toxic oxide dispersed in silver matrix, in order to obtain new ecological electrical contact materials. The new ecological electrical contact materials have many advantages from the technical, economical and environmental point of view [2,3]. It was found that the Ag-SnO₂ materials have the most favorable properties. Nowadays, it is known that electrical and mechanical properties of Ag-SnO₂ electrical contact materials can be improved by adding small amounts of In₂O₃, Bi₂O₃, CuO and WO₃ [3,4]. These additives increase dispersion of main oxides (SnO₂) in silver matrix and to the activation of sintering proces in order to gain optimal microstructure which results in improved electrical and mechanical properties.

2. EXPERIMENTAL

The influence of content of main oxide SnO₂ (8, 10, 12 mass%) and addition of In₂O₃ (2.9 mass%) on structural, mechanical and electrical characteristics of the Ag-SnO₂ electrical contact material was investigated. The studied electrical contact material based on Ag-SnO₂ with small addition of In₂O₃ was produced by powder metallurgy (PM) method from pure powders (Ag - 99.9%, SnO₂ - 99.9%, In₂O₃ - 99.99%). The silver powder used for investigations was obtained by chemical process and the SnO₂ and In₂O₃ powders are the commercial powders produced by Merck. Average particle size of the powders used in investigation was below 325 mesh, however the SnO₂ and In₂O₃ powders had more than 50% of submicron particles. Therefore the homogenization was done in several steps both wet and dry. Uniformity of the obtained mixtures was controlled with the use of scanning electron

microscope (SEM). The samples were pressed into $80\times20\times5$ mm plates by the hydraulic press with the pressure of 98 MPa in steel dye. In order to provide good bond between the contact material and contact holder by soldering, about 25% of the total thickness of the electrical contact material must not be oxidized. The samples were sintered in electro-resistive oven with programmable digital temperature controller with the accuracy \pm 1°C in the air atmosphere. The applied sintering regimes are presented on Figure 1. After sintering the samples were forged and hot rolled with the low degree of reduction to the final thickness of 2 mm.

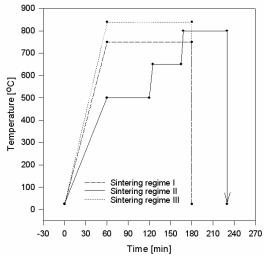


Figure 1. Applied sintering regimes in sintering process of investigated Ag-SnO₂ and Ag-SnO₂In₂O₃ electrical contact materials

The microstructure was observed on polished and etched cross-sections of the samples using the metallographic light microscope Leica DM ILM. Density of the samples was determined by standard methods. Vickers hardness (applying load of 5 kp) was measured after the applied sintering and mechanical treatment regimes. Electrical conductivity of the investigated materials was measured using the Foerster SIGMATEST 2.069 eddy current instrument for measurements of electrical conductivity of non-ferromagnetic metals based on complex impedance of the measuring probe, with the 8 mm probe. Technological procedure of production of investigated materials by powder metallurgy method (PM) is presented on Figure 2.

Figure 2. Technological procedure of production of investigated Ag-SnO₂ electrical contact materials

3. RESULTS AND DISCUSSION

The SEM images of the Ag-SnO₂ (92:8) and Ag-SnO₂ In₂O₃ (87.8:9.30:2.90) mixtures that were used in investigation are presented on Figure 3.

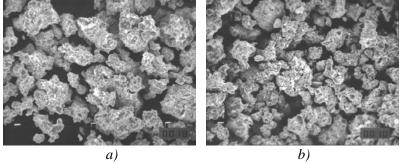


Figure 3. SEM images (x500) of a) Ag-SnO₂, and b) Ag-SnO₂ In₂O₃ mixtures

By continuous microscopic control of process of homogenization it was determined that despite the formation of agglomerates, due to very fine particles of the powders used, the good uniformity of mixtures was obtained which has provided reasonable values of density in the subsequent process of consolidation. Images of microstructures (cross-sections) of the investigated Ag-SnO₂ (92:8) electric contact materials after the applied sintering regimes and mechanical treatment are shown on Figure 4. The presented cross-sections are with and without Ag layer.

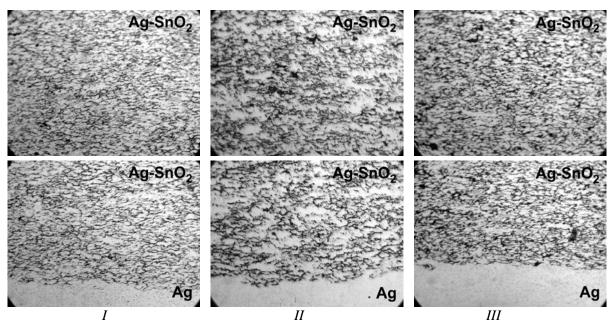


Figure 4. Microstructure (cross-section) of Ag-SnO₂ (92:8) sintered at regimes I, II, III and additionally mechanically treated

The obtained microstructures of the investigated Ag-SnO₂ In₂O₃ (87.8 : 9.30 : 2.90) electric contact materials after different sintering regimes and mechanical treatment are presented on Figure 5.

Figure 5. Microstructure (cross-section) of Ag-SnO₂ In₂O₃ (87.8: 9.30: 2.90) after sintering at regimes I, II and additional mechanical treatment

Since the investigated electrical contact materials were produced from very fine powders, which have a high specific surface and good sinterability the obtained microstructure was homogenous and the

porosity was very low. From Figure 4. and Figure 5. it can be seen that the components SnO₂ and In₂O₃ are uniformly dispersed in silver matrix. As a result a good mechanical properties and electrical conductivity were obtained. Summarized experimental results of density, hardness and electrical conductivity measurements of investigated electrical contact materials in relation to sintering conditions and mechanical treatment regimes are presented in the Table 1.

Table 1. Mean values of density, hardness and electrical conductivity of investigated electrical

contact materials with corresponding sintering conditions and mechanical treatment regimes

Sample No.	Ag (mass%)	SnO ₂ (mass%)	In ₂ O ₃ (mass%)	Sintering regime	Density g/cm ³	Hardness HV/5kp	Electrical Conductivity MS/m
1	88.0	12.00	-		7.2	73.2	26.98
2	90.0	10.00	_	I	7.9	73.6	33.32
3	92.0	8.00	-		7.4	70.8	35.75
4	92.0	8.00	-	II	9.6	91.6	36.04
5	92.0	8.00	1	III	9.8	102.0	38.57
6	87.8	9.30	2.90	I	9.0	77.2	27.13
7	87.8	9.30	2.90	II	9.4	84.2	30.75

The presented experimentally obtained results of microstructural analysis and determined mean values of density, hardness and electrical conductivity of the investigated Ag-SnO₂ and Ag-SnO₂ In₂O₃ electrical contact materials can be matched up to the mean values of the same characteristics of the Ag-CdO electric contact materials. Good results of density and hardness and consequently electrical conductivity were achieved for the Ag-SnO₂ with addition of In₂O₃ (2.9 mass%) also. This is completely understandable, since the small amounts of In₂O₃ (or other additives like Bi₂O₃, CuO and WO₃) will increase dispersion of main oxide in silver matrix and the activation of sintering process. This way the optimal microstructure can be obtained which would result in improvement of electrical and mechanical characteristics.

4. CONCLUSION

Maximal values of density, hardness and electrical conductivity of the investigated Ag-SnO₂ electrical contact material were obtained after sintering of the material at 840°C for 2 hours. By comparing of the obtained experimental results of investigation of Ag-SnO₂ electrical contact materials with different SnO₂ content, it can be observed that sintering regime has the significant influence on the improvement of mechanical and electrical properties. It was found that the small addition of In₂O₃ to Ag-SnO₂ has caused foremost improvement of mechanical properties while keeping the good values of electrical conductivity. Obtained microstructural characteristics and values of density, hardness and electrical conductivity of the investigated Ag-SnO₂ and Ag-SnO₂ In₂O₃ electrical contact materials are comparable to the same characteristics of the electric contact materials based on Ag-CdO.

5. REFERENCES

- [1] Talijan N., Stajić-Trošić J., Ćosović V., Grujić A., Romhanji E.: Composite Electrical Contacts Based on Silver, 10th International Research/Expert Conference, Trends in Development of Machinery and Associated Technology, TMT 2006, Barcelona-Lloret de Mar, Spain, 2006.
- [2] Talijan N., Stajić-Trošić J., Ćosović V., Grujić A., Romhanji E.: Electrical and mechanical properties of silver based electrical contact materials, 4th Balkan Conference on Metallurgy, Zlatibor, Serbia, 2006.
- [3] Wojtasik K., Missol W.: PM helps develop cadmium free electrical contacts, Elsevier Ltd, 2004
- [4] Lungu M., Gavriliu S., Canta T., Lucaci M., Enescu E.: Journal of optoelectronics and advanced materials, 8 (2006) 576-581

6. ACKNOWLEDGEMENT

This work has been supported by the Ministry of Science of the Republic of Serbia (Project N° IP06-8255B).