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ABSTRACT 
Thermal properties play very important role in the process of production and application, as well as 
in the materials quality assurance. The numbers of various experimental methods of thermal 
parameters of solids measurement exists in recent times. However, the greater part of this methods 
requires a very sophisticated experimental equipment efficient provide for the strictly defined 
conditions of appropriate thermophysical experiments. The paper deals with an experimental 
measurement of specific heat of rubber blends for the automotive industry by using the first-order 
exponential model of cooling solid, because just this approach requires a minimum of restrictive 
conditions. 
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1. INTRODUCTION 
Generally, the thermal parameters investigation represents the thermal field analysis of the thermal 
disturbed specimen of examined material. From an experimental point of view it is concerned its 
registration by a suitably ordered equipment. From a theoretical side it represents the solution of 
sufficient partial differential equation which models the thermal transport inside the specimen on such 
border and initial conditions, that have to be respected by technical realisation of an adequate thermo-
physical experiment. One of the simplest analytical models describing thermal transport inside solids 
is the first-order exponential model of the solid cooling in the fluid. The aim of described research is 
the effectual application of this model in the specific heat of rubber blends for the automotive industry 
experimental measurement. 
 
2. FIRST-ORDER EXPONENTIAL MODEL 
The simplest analytical model of a motionless cooling solid with density � and specific heat at the 
constant presure cp, without internal thermal sources and absorbents, may be formulated in the form of  
 

     (1) 

 
which represents the conservation law of heat excurrents from body’s volume V over its entire heat 
transfer surface S into the fluid environment. Variables T, t and q represent the spatially uniform but 
not constant thermal field, elapsed time and excurrents heat flux density, respectively, whereas  n  is 
an unit normal vector leading out of solid’s volume. It is assumed that neither geometric dimensions, 
nor solid material properties or its thermo-physical parameters are not temperature dependent. At 
sufficiently low initial temperature of the solid T , as well as of 0 ambient temperature Tamb, when the 
radiation heat transfer can be neglected, and provided the Biot number Bi << 1, thermal gradients 
inside solid will be negligible, such that neither temperature nor heat flux density will not be functions 

 543



of spatial coordinates, hence they will be invariant towards desired integrations. Practically, if Bi < 
0,1 it is possible the surface temperature consider the spatially uniform temperature of the solid. 
Subsequently, after a substitution of the vectors scalar product  n . q  by the Newton cooling law and 
after the relevant integrations and variables separation, the exact analytical solution of equation (1) is 
represented by the exponential thermal function 
 

        (2) 
 
where 

     

        (3) 

 
represents the time constant of the cooling solid dynamic thermal system, L = V/S is its characteristic 
dimension, h is an average coeficient of convective heat transfer from entire heat transfer surface and 
� represents a thermal conductivity of the solid material. Right the thermal function (2) is usually 
termed as the first-order exponential model of cooling solid dynamic thermal system or as a lumped 
capacitance model [1]. 
 
3. SPECIFIC HEAT ESTIMATION 
Provided all others specimen's parameters are known, equation (3) for the time constant τ makes it 
possible, after the detection of its value  –  e.g. by using some of the experimental data reduction 
methods [2] – compute the specific heat of its material. However, the convective heat transfer 
coefficient h largely represents the unknown quantity. At the same time, it is usually relatively very 
difficult to evaluate it experimentally. Nevertheless, the substitution of time constant in the thermal 
function (2) by relation (3) allows to determine the convective heat transfer coefficient from the 
experimental time history of the cooling solid surface temperature according to formula  
 

                   (4) 
 
It also allows to determine the specific heat from the same experimental thermal data series, namely 
via a process of its parametric fitting [3] by the exponential thermal function in the form of (4) using a 
appropriate chosen technique. The iterative Trust-Region algorithm of the nonlinear least squares 
fitting method [4] was used in our case. Number of unknown parameters, namely Tamb, Tmax = T0 – 
Tamb, cp and h, invited construction of the recursive procedure of their identification [5]. 
 
4. EXPERIMENTAL PROCEDURE 
The experimental thermal data set was colected from the surface of the vertically located specimen  –  
with the geometry of semi-infinite 0,14 x 0.09 x 0.002 m slab mades of the investigate rubber blend 
for automotive industry, cooling in the air with constant temperature of 21,7 °C under the conditions 
of natural convection  –  by using the REYTEK THERMALERT MID infrared thermo sensor 
sensitive in the wavelength range of 3 – 8 μm. The thermal data registered with 64 Hz sampling 
frequency were transported to the collaborative 1,6 GHz / 1 GB RAM personal computer for a 
quantitative analysis realised in the Matlab® software package. 
 
In the first step, the experimental data were smoothed by a robust smoothing procedure of a locally 
weighted linear regression using a least squares method with application of a quadratic polynomial 
regression model. The applied robust smoothing procedure with the span of 40 % of entire data set 
provided the resistant to utliers. The goodness of the smoothing process was checked by randomness 
of residuals distribution [6]. 
 
In the next parametric fitting of smoothed data set by thermal function (2), at first they were estimated 
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all three unknown parameters Tamb, Tmax and τ by using the first 400-steps iteration cycle of applied 
Trust-Region algorithm. Parameters were estimated in constrained intervals of their expected values. 
Subsequently, the identified value of Tmax was substituted into the same thermal function (2) and 
smoothed data were fitted in the next iteration cycle in constrained intervals regarding the result of 
foregoing cycle. The new values of  Tamb  and τ  were estimated in the next iteration cycle with the 
accordingly modified constrained intervals. This recursive procedure, hence fixing the value of one or 
more parameters identified in previous iteration cycle to identify the others in the next cycle, were 
repeted until confidence intervals all of three parameters reached their minimum, the randomness of 
residuals distribution reached the maximum and until the goodnes of fit statistics coefficients SSE, R - 
square, AdjR-square and RMSE were optimized [7]. 
 
Identified parameters Tmax  and  Tamb of the exponential model in the form of thermal function (2) 
where then substituted into the thermal function (4). Subsequently, the unknown parameters cp and h 
were estimated via the parametric fitting of smoothed experimental data set by this function in the 
same manner as thereinbefore. 
 
5. RESULTS AND DISCUSSION  
The raw experimental thermal data, smoothed data and result of their fitting process by exponential 
thermal function (4) are presented in the Figure 1. 
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 Figure 2. Prediction of the future experiment 

results with 99 % confidence bounds along 
with smoothed and fitted data set .

Figure 1. Raw experimental data, 
smoothed data and fitted curve. 

 
 
 
 

 
The estimated specific heat value along with its 95 % confidence bounds, as well as with monitored 
goodness of fit statistics coefficients are presented in the Table 1.  
 
Table 1. The estimated specific heat value, 95 % confidence interval and monitored goodness of fit 
statistics coefficients values 

cp [J/kg/K] 95 % CI SSE R-square Adj.R-square RMSE 

1394 1348 – 1440 0,0057 0,9979 0,9979 0,0218 

 
Closeness of SSE and RMSE to zero value in conjunction with closeness of R-square and AdjR-square 
to the value of 1, as well as a relatively narrow 95% confidence interval confirm the equally high 
level of specific heat identification reliability via the described parameter estimation procedure. At the 
same time, attained results document also the high reliability of the first-order exponential model at 
the analytical description of the investigated rubber blend cooling process. Moreover, validity of the 
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model is documented by prediction of future experiment results with the 99 % confidence interval 
whose maximum range represents only 0,2°C (Figure 2). 
 
6. CONCLUSIONS 
The described parametric fittig procedure provides to identify the specific heat of investigated rubber 
blend cooling in the fluid by using the first-order exponential model with high level of reliability. 
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