REGARDING ON NEW BALL-BEARINGS HAVING A MODIFIED INTERNAL GEOMETRY (Part 1)

Dan Săvescu "Transilvania" University of Brașov B-dul Eroilor, Nr. 29, Brașov, RO 500036 România

ABSTRACT

In this paper there are presented some considerations regarding ball-bearings' rings construction, assembling conditions, loading capacities, new constructions of ball-bearings having other number of balls or other dimensions of them in the way to have improved loading capacities. **Keywords:** ball-bearings, geometry, capacities.

1. INTRODUCTION

There are papers [1, 3, 7] in which there are presented possibilities to influence the static and dynamic loading capacities of ball-bearings. A proper example is to modify the internal geometry of the rings, in the way to have other number of balls, z or other dimensions of them D_w respecting the external diameter, D, and the width B. It is important in some applications, where we can reach to other (bigger) dimensions of the internal diameter of the ball-bearing, d (i.e. gear boxes, car axles, industrial robots). The dimensions of 6309 ball-bearing are $45 \times 100 \times 25$ with $D_w = 17.462$ mm and z = 8.

2. BALL-BEARINGS CONSTRUCTION

It is known that [1, 3] ring dimensions, presented in Figure 1, are determined with the following relations:

- primitive diameter: $P_w = 0.55D + 0.45d$;
- external rolling way diameter: $E = P_w + D_w$; (2)

(1)

(5)

(6)

- internal rolling way diameter: $F = E 2D_w$; (3)
- external ring collar diameter: $D_1 = E k_1 D_W$; (4)

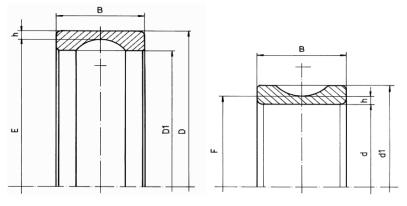


Figure 1. Rings dimensions.

- internal ring collar diameter: $d_1 = F + k_1 D_W$;
- effective filling angle: $\varphi_{ef} = 2(z-1) \arcsin(D_w / P_w);$

• number of balls: $z = [\varphi_{ef} / 2 \arcsin D_W / P_W)] + 1$.

This study is made on 6309 ball-bearing having some different constructions with different internal geometry, presented in Table 1.

Tuble 1. 0509 Dull-Dearing constructions.								
Ball-bearing	d	В	D	D_w	Ζ	E	F	h
6309 URB	45	25 100		17.462	8	89.962	55.037	5.02
6309 M1	55			17.462	8	94.962	60.038	2.52
6309 M2	53.4		18.256	8	94.956	58.444	2.52	
6309 M3	51.8	23	100	19.050	7	94.956	56.850	2.52
6309 M4	48.6			20.638	7	94.938	53.662	2.53
6309 M5	56.6			16.669	9	94.969	61.631	2.51

Table 1. 6309 Ball-bearing constructions.

As it can be seen all the ball-bearings have the same external diameter D = 100 mm and the same width B = 25 mm. The differences among them are the number of balls $z = 7 \dots 9$ and the diameter of balls D_w .

All the constructions respect the assembling filling angle ($\varphi_{ef} < 197^{\circ}$) for the heavy series (6309) and presented in Table 2.

The thickness of the external rings is $h = 2.519 \dots 5.02$ mm (see Table 1). These dimensions are limited by the technological reasons.

In Figure 2 are presented ball-bearings built and used in applications.

The loading capacities, static or dynamic, are determined with the following relations:

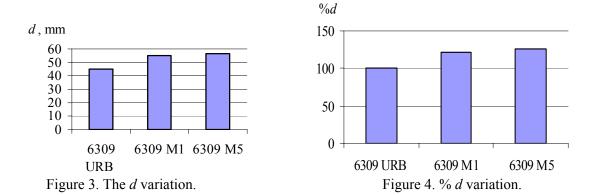
$$C_{0r} = f_0 z D_w^2 . (8)$$

(7)

$$C_r = 1.3 f_c \, z^{\frac{2}{3}} D_w^{1.8} \, . \tag{9}$$

Ball-bearing	P_w	φ_{ef}	D_1	d_1
6309 URB	72.5	195.1	83.0	61.8
6309 M1	77.5	182.3	88.0	67.1
6309 M2	76.7	192.8	87.7	65.7
6309 M3	75.9	174.4	87.3	64.5
6309 M4	74.3	193.5	86.7	61.9
6309 M5	78.3	196.7	88.3	68.3

Table 2. 6309 Ball-bearing.


Figure 2. Ball-bearings constructions.

For 6309 ball-bearing and its variants the theoretical loading capacities are presented in Table 3:

Ball-bearing	C_0 , kN	%	C_r , kN	%
6309 URB	29.51	0	52.77	0
6309 M1	29.51	0	53.19	+0.89
6309 M2	32.26	+9.3	57.26	+ 8.59
6309 M3	30.73	+ 4.1	56.07	+ 6. 03
6309 M4	36.11	+22.3	63.20	+20.00
6309 M5	30.25	+ 2.5	53.19	+ 0.89

Table 3. 6309 Ball-bearings' loading capacities.

In Figure 3 and Figure 4 there are presented the variations of the internal ball-bearing diameter d, depending on the considered variants, 6309 URB, 6309 M1 and 6309 M5.

3. CONCLUSIONS

Studying the theoretical results presented in Table 1 and Table 3 it can be considered that the variant 6309 M4 is an equilibrated construction, presented in Figure 5.

Figure 5. The bearing assembly draw.

4. **REFERENCES**

- D. Săvescu. Theoretical researches concerning ball bearings having 35 mm the inner diameter (Part I and II). The 3rd International Conference RaDMI 2003, p. 1973-1980, Herceg Novi, Serbia and Montenegro.
- [2] J.D. Smith, and C.K. Liu. Stresses due to tangential and normal loads of an elastic medium with application to some contact stress problems. Journal of Applied Mechanics, Vol. 20, 1993.
- [3] D. Săvescu. Some aspects regarding the internal construction of ball-bearings and their rigidity. The IXth International Conference on Theory of Machines and Mechanisms, 2004, Liberec, Czeck Republic, p. 689-694.
- [4] D. Săvescu. About new constructive variants of ball-bearings used in mechanical constructions. The IXth International Conference on Theory of Machines and Mechanisms, 2004, Liberec, Czeck Republic, p. 695-698.
- [5] D. Săvescu a.o. Some considerations regarding the theoretic loading capacities of the 6306 ball-bearing (Part I and II). The VIIIth International Conference on Theory of Machines and Mechanisms, 2000, Liberec, Czeck Republic, p. 673-682.
- [6] D. Săvescu. Experimental researches about deflections of the especial ball-bearings in the way to obtain higher performances. Proceedings of CK 2005, International Workshop on Computational Kinematics, Cassino, Italy, 2005, paper 16-CK2005.
- [7] D. Săvescu. Aspects regarding new ball-bearings having different internal geometry (Part I and II). 18th International Conference on Production Research ICPR2005, Salerno, Italy.