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ABSTRACT 
In this paper we analyze theoretically and experimentally few sizes connected to the rubber elastic 
characteristic and we will determine elastic module and specified deformation energy. In the first part 
we obtain the characteristic relations  for these two sizes (G,U) based on the kinetic theory of 
elasticity.In the second part we analyze the figures obtained experimentally by constraining a rubber 
piece to a monoaxial compression on a special stand to obtain the values for G and U. The values are 
graphically interpreted and they are also processed in a table. Finally, we make a comparison 
between the values obtained through the experiment and the ones obtained theoretically.  
Keywords: elasticity, entropy, transversal elasticity module, own energy for deformation, rubber 
 
1. INTRODUCTION 
The rubber (rubber mixture) used for pieces fabrication contains, beside rubber itself (the elastomer) 
and other substances (ingredients). Vulcanised rubber mixture is a material whose character is mostly 
elastic, although it also keeps its plastic character. Consequently, rubber mixtures are considered as 
viscoelastic materials. Elasticity derives from the substance’s molecular structure. Rubber’s molecular 
structure is described by: 
• Long macromolecular chains that rotate freely around the bands with neighbouring molecules. 
• Bounded macromolecular chains forming space system. 
• Molecules with large mobility. 
 
2. THEORETICAL ASPECTS 
Rubber elasticity is of kinetic nature, while crystalline material’s elasticity is determined by the 
atom’s interactions nature, so, rubber’s particular elasticity is called high elasticity. The explanation 
of high elasticity has been provided by Mark an Kuhn through intermolecular thermal movement, 
having a particular entropy character [1, 2]. High elasticity is first treated by examining the 
phenomena at macromolecular scale [6]. This theory provides data for elastic and resistance rubber 
properties when the rubber is constrained to deformation that are smaller than 300%. For statistic 
treating of rubber elasticity, an ideal macromolecule is used. The ideal macromolecule is the simplest 
model possible, which does not correspond discretely to any certain molecular structure. This 
macromolecule contain n bonds of the same length l.  

 
 

Figure 1. Figure for determining the 
macromolecule’s  end 

Treating this macromolecule is not of interest to 
know the valence angle or any other restrictions over 
elements mobility from the macromolecule. It is 
considered that the macromolecule has the end A 
fixed in xOyz system origin and the end B mobile 
moving at random. Even if the macromolecule’s end 
B’s movement is at random all B’s position do not 
have the same probability. For a particular position, P 
of coordinates x,y,z, there will be a probability 
associated in such manner that the end B will be 
located in a volume element in the shape of a cuboid, 

dxdydzd =τ . The knowledge of this probability 
requests the evaluation of the relative number of 
configurations of the macromolecular chain that 
consists in different positions of point B. 
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The probability of any particular position is considered proportional with the number of 
configurations according to the relation: 

 ( ){ } ,..exp..),,( 2222
3

dzdydxzyxbbdzdydxzyxp ++−=
π

     (1) 

 
Where: 
 p(x,y,z) represents the probabillity density; 
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The (1) relation gives the probability that the components of the vector r that gives the position of the 
macromolecular chain to be found in the intervals x to x+dx, y to y+dy, z to z+dz.  The (1) relation has 
a great importance in the statistic theory of rubber’s elasticity. The form of this relation is that of the 
Gaussien error and it is true only if the length of vector r is much smaller than the maximum length,  
nl of the macromolecular chain. The distribution function (probability density) of the 
macromolecule’s free end has spherical symmetry and because of that it can be written like this: 
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Considering the relation (3), the (1) relation can be written like: 
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For the macromolecular chain, the entropy scan be determined, using the relation: 

 ],),,([ln τdzyxpks =          (5) 

Where k is the Boltzmman constant. Replacing the (4) relation in the (5) relation: 
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But the volume element τd is considered constant and that is why the (6) relation can be written: 

 ,                                   (7) 22rkbcs −=
 
Where c is an arbitrary constant that includes the elementary volume τd . In any situation we are 
interested with the entropy variation between two states, c constant does not have an meaning in 
physics. From the (7) relation it can be observed that the entropy has maximum value when the two 
ends of the macromolecular chain are the same (r=0). Next an individual chain is considered 
subjected to a deformation. In the analysis of the rubber macromolecule’s deformation, it is 
considered that the main deformation axis are the coordonate axis. Following a deformation defined 
by the (λ1, λ2, λ3), components, the macromolecule’s end occupies a new position, in the elementary 
volume dx.dy.dz and it is showed by the vector r, described by the (x,y,z) coordonates, which means 
that the initial vector is described by the  (x ⁄λ1 , y ⁄λ2 , z ⁄λ 3 ) coordinates. The macromolecular chain’s 
entropy in a non-deformed state is given by the relation:  

).( 2
0

2
0

2
0

22
0

2
0 zyxkbcrkbcs ++−=−=                                                                               (8)  

 

The entropy of the same macromolecular chain extended is given by the following equation. 
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The entropy variation as a deformation result is found through the following equation: 
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Total entropy for N macromolecular chains in the volume unit obtained because of the deformation is 
given by the relation: 
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],)1()1()1[(
2

0
2
0

2
0

2
0

2
0

2
3

2
0

2
2

2
0

2
1

2

∑=∑+∑+∑

∑−+∑−+∑−∑ −=Δ=Δ

rzyx

zyxkbsS λλλ
    (11) 

 
Because the direction vector r0 in non-deformed state is aleatory we consider:  
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but using the position sum of the position vectors that characterize mobile ends of those N un-
deformed  macromolecules we can obtain quadratic average of position vector r0 with relation: 
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Introducing relation (12) in relation (11) the entropy variation of N  macromolecules from volume unit 
we will obtain: 
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If we know relation (2) and the fact that the quadratic average of position vector r0 is comparable with 
maximum length, nl of the macromolecular chain, 22

0 23 br =  then relation (13) will be: 
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o calculate the own deformation energy we use the variations of energy and deformation and:           

  ∆S=-
T
U )3(

2
2
3

2
2

2
1 −++=⇒ λλλNkTU .                                                                        (15)           

  
where  U  represents own deformation energy T represents temperature. In (15) relation the product 
NkT = G  (G represents the transversal elastic module). 
Applying these to a monoaxial deformation and keeping in mind that rubber element is not 
compressible  (  λ1λ 2λ3=1), we obtain deformation energy on volume unit: 
 

 )32(
2 1

2
1 −+=

λ
λGU .                                                        (16) 

  
To obtain tensionσ  we start from relation (16) and we use the fact that dU= σ.dλ and we obtain σ 

= ;
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dU  and deriving relation of the own deformation energy we obtain:    
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3. EXPERIMENTAL CHECKINGS 
For determining the tension from the rubber mixture, epruvet 
have been used, like the one in Figure 2. 
This rubber epruvet was constraint to deformation along the Ox 
axis, operation that was realized on a special dynamometer, the 
monoaxial deformation of the epruvet has been released with the 
constant velocity of 500 mm/min. The values for the active 
section, S0 of the epruvet, for the force, F, for the deformation 
ratio, λ are found in the first and second tables. Processing the 
data in the first table and using the relation (17), we obtain the 
value G=1.41.106 N/m2. 

 
Figure 2. Epruvet 

 
Table 1. 

Nr. crt. S0   m-2 λ F N σ = F/S0  N/m2         G   N/m2 Gmed.  N/m2

1 12.56.10-4 4.5 75.36.102 6.0.106 1.34.106 1,41.106

2 12.56.10-4 4.5 81.4. 102 6.5.106 1.46 .106 1,41.106

3 12.56.10-4 4.5 80.52. 102 6.41.106 1.44.106 1,41.106

 
Considering the (16) relation and the values of G, the value obtained for the deformation energy per 
unit volume is 3610.50,12 mJU = . 

 
Table 2 

Nr. crt. λ G N/m2 U J/m3 Umed. J/m3

1 4.5 1.34.106 11.85.106 12.50.106

2 4.5 1.46 .106 12.90.106 12.50.106

3 4.5 1.44.106 12.73.106 12.50.106

 
4. CONCLUSIONS 
The numeric values for G and U are obtained using statistic theory. The values obtained for the two 
measures are comparable with the values obtained using other methods found in different specialty 
papers [1]. This aspect shows that statistic theory explains relatively well the elastic character of 
rubber. Existent deviation between the numeric values obtained with statistic theory and other 
methods are because this theory explains the elastic characteristic of rubber and because that in 
experimental methods these measures are was determined on epruvets and rubber pieces. In the case 
of rubber pieces values of these measures does not depend only on the rubber mixture, and they also 
on the shape and size of rubber pieces. Bound to the theoretical aspects presented and experimentally 
determined you can conclude: 
• the adhesion process it can base on the diffusion process; 
• diffusion  can be considered only if we admit that it exists a contact area where the London forces 

manifests. 
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