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ABSTRACT 
The paper deals with some representative geometrical and dynamic aspects of a new cycloidal 
reducer variant with modified structure, proposed by the authors: geometrical optimization of the 
cycloidal gear, analysis of the transmission ratio and efficiency, and analysis of the dynamic response 
in a relevant functioning case. 
Keywords: planetary cycloidal reducer, speed ratio, efficiency, dynamic response. 
 
1. INTRODUCTION 
A new variant of a cycloidal reducer with one sun gear, proposed by the authors, is illustrated in 
Fig. 1; it contains a cycloidal gear pair with rollers, consisting of a fix sun gear with internal cycloidal 
teeth 3 and the eccentric rollers 2. The element H (which contains an eccentric bearing) designates the 
reducer’s input, while the element 1 (on which the rollers 2 are eccentrically articulated) designates 
the output. In the premise that the reducer uses z2 = 20 rollers (as teeth), then z3 = z2 + 1 = 21 teeth 
and, implicitly, the reducer accomplishes the transmission ratio [1]: 
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The aims of the geometrical and dynamic modeling, presented in the paper, are: 
1. Geometrical optimization of an internal cycloidal gear pair with rollers, based on the premises (Fig. 2):  

a. the cycloidal gear pair has the radius of the generating circle Rg = 90 [mm] and the radius of 
the base circle Rb = 94,5 [mm];  

b. there are used as optimization parameters: the roller’s radius rr and the distance h (from the 
centre of the generating circle Og to the roller’s centre – the generating point P), based on 
which the coefficient of the cycloidal teeth addendum modification is defined x = (h – Rg)/Rg.  

2. Modeling the movement equation in the premises of friction neglecting and respectively friction 
considering, and simulating the dynamic response of a machine obtained by connecting the 
planetary cycloidal reducer to a motor and a pump, with the following mechanical characteristics:  

 motor: 11 baT ii +ω⋅−= ; pump: oo aT ω⋅−= 2 ; 1273.01 =a  N·m·s, 6.251 =b  N·m, a2 = 1 N·m·s. (2) 

The reducer is characterized by the following speed and acceleration transmitting functions: 
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Figure 1. The cycloidal reducer equipped with a sun gear 3 and eccentric rollers 2. 
 
2. ON THE GEOMETRICAL OPTIMIZATION OF THE CYCLOIDAL GEAR PAIR WITH 

ROLLERS 
According to Fig. 1 and 2 and the previous premises, it outcomes that the cycloidal gear pair, that will 
be optimized, has:  
1) a generating circle (of radius Rg = 90 [mm]), in which 

plane there are z2 = 20 equidistant generating points P, 
materialized by the centers of the z2 = 20 rollers;  

2) a base circle (of radius Rb = 94,5 [mm]); the z2 = 20 
generating points describe in its plane a hypocycloid 
with z3 = z2+1 = 21 loops (Fig. 3,a); 

3) a cycloidal gear with z3 = 21 teeth, which resulted as the 
envelope curve of a family of circles of rr radius and the 
centers on the hypocycloid (Fig. 3,b) with z3 = 21 loops 
(Fig. 3,c). 

The geometrical optimization of this gear was performed by 
applying the following algorithm: 
a) Firstly, a class of hypocycloids is generated using a set 

of values (properly chosen) for the coefficient x (and, 
implicitly, for the distance h – see Fig. 2);  

b) Then, a subclass of gears is generated from each 
hypocycloid that was previously obtained (as envelope 
curve), using a set of values (properly chosen) for the 
roller’s radius rr; 
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Figure 2. The geometrical parameters 
of a hypocycloid. 

c) The optimal variant (described through the values of the quantities x and rr that complies with the 
geometrical and the constructive requirements) is extracted from the obtained set of generated gears.  

From the analysis of the obtained gears, it outcomes that the gear with the parameters x = +0,333 and 
rr = 15 [mm] represents the optimal solution (Fig. 3), both from the geometrical and constructive point 
of view. 
 
3. DYNAMIC MODELLING OF THE CYCLOIDAL PLANETARY REDUCER  
The main objective of the dynamic modeling of the reducer is to obtain the torque transmitting function:  

TH  = TH(ϕH, T1). This function is established using Lagrange method QEE
dt
d cc =⎟⎟
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of friction neglecting (Fig. 4,a), and Newton – Euler method (Fig. 4,b,c) in the case of friction considering. 
The dynamic models are derived neglecting the inertial effects of the component kinematical 
elements, excepting the input and output elements (H and 1, Fig. 4). 
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Figure 3. Hypocycloid generated with the addendum coefficient x = 0,333 (h = 120 mm) and rr = 15 mm. 
 

a) Friction neglecting case 
Conformity with Fig. 4,a, the kinetic energy EC and the generalized force Q are:  
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where Ji, i = 1,H is the axial inertial moment of the input element H, and respectively of the output 
element 1, with following values considered in numerical simulations: J1 = 0.02 and JH = 0,06 [kg·m2]. 
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Figure 4. Kinematical scheme a) and dynamic scheme (Newton-Euler method): b) element H, c) element 1. 

The movement equation of the considered machine CC motor − planetary reducer − pump, in the 
premise of friction neglecting, is finally obtained: 

 ( )[ ] ( )[ ] ⇒=−ω⋅−++ε⋅−+ 06.2511237.01 2
0

2
01 HHH iiJJ 06.251262.006005.0 =−ω⋅+ε⋅ HH .(5) 

b) Friction considering case 
In this case, conformity with Fig. 4,b and c, the following equations can be written: 

 HiHH TTJ −=ε⋅ , 011 TTJ +−=ε⋅ ; (6) 

these relations must be completed with the torque equations of planetary unit (see Fig. 4,a) [1, 2]: 

 T1 + T3 + TH = 0, T1 · i0 · η0
w + T3= 0.  (6’) 
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Finally, the machine movement equation in the premise of friction considering is obtained: 

( ) ( )[ ] ( ) ( )[ ] ⇒=−⋅−⋅−++⋅⋅−⋅−+ 06.25111237.011 0001000 H
w

H
w

H ii JiiJ ωηεη  

 06.251267.006006.0 =−ω⋅+ε⋅ HH , (7) 

where we considered and 99.02312130 ≅⋅== HHH ηηηη ( ) 1Tωsgnw 11H −=⋅= . 
In the premise of , the operating point of the machine in stationary stage is obtained from eq. 5 
and 7, in the premises of: 

0=εH

a) friction neglecting: , 185.202 −≅  sHω  NmTH 507.0≅ , , .  1
1 14.10 −−≅  sω  NmT 14.101 ≅

b) Friction considering: ,102.202 −≅  sHω  NmTH 606.0≅ , , . 1
1 1.10 −−≅  sω  NmT 1.101 ≅

The machine responses in relation with time for speed, acceleration and torque, in both premises of 
friction considering and respectively friction neglecting, are represented in Fig. 5. 

a  b   

c  d  

Fig. 5. The variation in time [s] of the speeds a) ωH [s-1 ] and b) ω1[s-1], and torques c) TH [Nm] and 
d) T1 [Nm], friction considering (dashed line) and friction neglecting (continuous line). 

 
4. CONCLUSIONS 
a) The optimal values of the geometrical parameters x and rr, considering the radiuses Rg and Rb and 

the number of rollers as known parameters, were established using a proper Matlab application. 
b) The analysis of the generated gears highlights the fact that there are preferred the relative high 

positive values of the addendum modification coefficient x, together with the high values of the 
roller’s radius rr. 

c) Based on the dynamic models obtained in both cases of friction neglecting and friction considering, 
numerical simulations were performed and the results are systematized in Fig. 5. Accordingly to 
the Fig. 5, the machine has a starting time of about 2 [s]; after this time the machine achieves the 
stationary stage. At any time t, the speed ratio and torque ratio, without friction, are identically 
with the transmitting ratio (in modulus): |ωH /ω1|= |T1(η0 = 1)/TH(η0 = 1)| = 20, while the torque 
ratio with friction (in modulus) is lower than the transmitting ratio: |T1(η0 < 1)/TH(η0 <1)| < 20. 
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