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ABSTRACT 
A new method for deriving the Joule-Thomson coefficient from speed of sound is recommended. It is 
based on numerical integration of differential equations connecting the speed of sound with other 
thermodynamic properties. The method requires initial values of density and heat capacity at a single 
temperature in the pressure range of interest. It is tested by deriving the Joule-Thomson coefficient of 
gaseous argon in the temperatures between 200 and 300 K, and in the pressure range from 2 to 10 
MPa. Estimated absolute average deviation between calculated and reference values of the Joule-
Thomson coefficient is 0.2%. 
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1. INTRODUCTION 
If the pressure of a flowing fluid is decreased by means of an adiabatic throttling process, in which 
kinetic and potential energy changes are negligible, the enthalpies of the fluid at the inlet and the exit 
of the throttling device are equal. This result can be established by applying the conservation-of-
energy equation to the steady-flow throttling process. Throttling the fluid to a lower pressure can alter 
the temperature of the fluid. In fact, the fluid temperature can increase, decrease, or even remain 
unchanged. Positive values of the Joule-Thompson coefficient signify that the temperature decreases 
as a result of a pressure drop caused by throttling; whereas negative values signify that the 
temperature increases. If the coefficient is zero, throttling will not cause a change in the temperature 
of the fluid [1]. 
The speed of sound is thermodynamic property of a fluid which is readily measured with higher 
accuracy than majority of other thermodynamic properties. A combination of highly-accurate 
experimental data and a suitable method of analysis can provide a powerful tool for determining 
highly precise and accurate thermodynamic-property data. This connection has been made in this 
paper by means of a numerical integration of the equations that link the speed of sound and the Joule-
Thomson coefficient. Although the gas for which the thermodynamic properties were derived from 
measurements of the speed of sound is neither particularly complex nor unstudied, the method 
developed here can be extremely useful for deriving properties of other less-studied fluids for 
engineering applications [2]. 
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2. THEORY 
The Joule-Thompson coefficient, used to measure the temperature change of a fluid during a throttling 
process, is defined by the expression [3]: 
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where μJΤ is the Joule-Thomson coefficient, T is the temperature, p is the pressure, and h is the 
enthalpy. 
 
With aid of standard thermodynamic identities, following expression for the Joule-Thomson 
coefficient may be derived: 
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where ρ is the density, cp is the specific heat capacity at constant pressure, and αp is the thermal 
expansion coefficient. 
Thermodynamic speed of sound (speed of sound at zero frequency) in a fluid, is defined by the 
expression [4]: 
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where u is the speed of sound, p is the pressure, ρ is the density, and s is the entropy. 
The following set of partial differential equations may be derived from Eq. (3) if one takes T and p as 
independent variables [5]: 
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Set of Eqs. (4) to (7) has no analytical solution, but it may be solved numerically if initial values of ρ 
and cp are specified at a single temperature in the pressure range of interest. It may be solved as an 
initial value problem for the set of first-order ordinary differential equations if all pressure derivatives 
are estimated independently. The Joule-Thomson coefficient is then obtained from Eq. (2) in the 
range of temperature and pressure in which experimental speeds of sound are available. 
 
3. RESULTS AND CONCLUSION 
Recommended numerical method is used for deriving the Joule-Thomson coefficient of gaseous argon 
from its speed of sound [6], in the temperatures between 200 and 300 K, and in the pressure range 
from 2 to 10 MPa. The temperature range is divided into 5 isotherms (e.g. 200 K, 225 K, 250 K, 275 
K, and 300 K), and the pressure range is divided into 5 isobars (e.g. 2 MPa, 4 MPa, 6 MPa, 8 MPa, 
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and 10 MPa). The set of Eqs. (4) to (7) is solved numerically by combined Adams-Moulton [7] and 
Runge-Kutta [8] method. All pressure derivatives are estimated by Lagrange interpolating polynomial 
[9] of fourth-degree. Figure 1 gives an impression of the results obtained, while more detailed insight 
may be obtained from Table 1. Initial values of ρ and cp [10] are specified along isotherm at 200 K, 
and therefore this isotherm is omitted. Estimated absolute average deviation of calculated values of 
the Joule-Thomson coefficient, with reference to corresponding reference values [10], is 0.2%. 
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Figure 1. Joule-Thomson coefficient vs. p; full line this work;     Ref. [11]. 
 
      Table 1. Results of numerical integration vs. reference values of the Joule-Thomson coefficient 

Temperature Pressure μJΤ, calc μ JΤ, ref μJΤ, calc −μ JΤ, ref μJΤ, calc −μ JΤ, ref

K MPa K/MPa K/MPa K/MPa % 
225.0  2.0  5.752  5.731  0.021  0.371
225.0  4.0  5.339  5.341  -0.002  -0.031
225.0  6.0  4.901  4.901  0.000  -0.006
225.0  8.0  4.421  4.418  0.002  0.048
225.0  10.0  3.903  3.906  -0.002  -0.064
250.0  2.0  4.783  4.774  0.010  0.204
250.0  4.0  4.477  4.470  0.007  0.151
250.0  6.0  4.142  4.143  -0.001  -0.024
250.0  8.0  3.798  3.799  -0.001  -0.014
250.0  10.0  3.446  3.444  0.002  0.062
275.0  2.0  4.010  4.028  -0.018  -0.454
275.0  4.0  3.795  3.784  0.011  0.288
275.0  6.0  3.533  3.529  0.004  0.125
275.0  8.0  3.266  3.266  0.000  -0.013
275.0  10.0  2.999  3.000  -0.001  -0.035
300.0  2.0  3.377  3.431  -0.054  -1.566
300.0  4.0  3.236  3.230  0.006  0.189
300.0  6.0  3.034  3.024  0.009  0.308
300.0  8.0  2.820  2.816  0.004  0.150
300.0  10.0  2.607  2.607  0.000  0.015
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