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ABSTRACT 
We consider the singularly perturbed selfadjoint one-dimenzional non-linear reaction-diffusion 
problem, 

( ) ( ) ( )yxfxypxyyL ,: 2 =−′′= εε ,    on  ( )1,0  

( ) 00 =y ;  ( ) 01 =y , 

where f(x,y) is non-linear function. For this problem, using spline-metod with the natural choice of  
function, a difference scheme, on a non-uniform mesh,  is given. Constructed non-linear difference 
scheme has uniform convergence in points  of the uneven division segments.. 
Key words. Non-linear reaction-diffusion problem, difference scheme, singular perturbation problem 
 
1. INTRODUCTION 
We consider the following non-linear reaction-diffusion  problem 

             ( ) ( )yxfxypxy ,)(2 =−′′ε ,  on ( )1,0                                      (1) 

                   ;   ( ) 00 =y ( ) 01 =y ,                                               (2) 
where 10,0 <<>= εconstp . In general case for non-linear function ( )yxf , , we suppose that it 
is coninously differentiable, and has strictly positive derivative by varieable y, that is  

                         0>≥=
∂
∂ mf
y
f

y on [ ] Rx1,0 (m=const.)                                       (3) 

It's clear, from theory of boundary problems, that the reaction-diffusion problem (1)-(3) has unique 
continuous differentiable solution. The solution y has, in general, a boundary layer at both end points 
of  [ ]1,0 .
 
2. DISCRETIZATION OF THE PROBLEM 
Let's write difference equation (1) as 

         ( ) ( ) ( ) ( )yxfxypxyxyL ,: 2 =−′′= εε ,    on [ ]1,0 .                                           (4) 
Next, let   , be a mesh on the interval [0,1]. 1...0 210 =<<<<= Nxxxx
Consider following boundary problems: 

( ) 0:=xuL iε  ,   na   ,   ( )1, +ii xx ( ) ( ) 0,1 1 == +iiii xuxu ,      ( )1,...,1,0 −= Ni                            (5a) 
( ) 0:=xuL iε  ,   na   ,   ( )1, +ii xx ( ) ( ) 1,0 1 == +iiii xuxu ,      ( )1,...,1,0 −= Ni                            (5b) 

It’s obvious that problems (5) can be analytically solved. Solutions of the problems (5a) and (5b) 
denote by ,  ( )xu I

i ( )xu II
i ( 1,...,1,0 )−= Ni , respectively. Note that ( )xu I

i  i  are two linearly 
independent solutions of  equation  

( )xu II
i

0=uLε  ,  on ( )1, +ii xx   ( )1,...,1,0 −= Ni . 
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From previous works, we know functions  ( )xu I
i  and ( )xu II

i  ( see [ ]2  ), and they are of the form  
 

 ( ) ( )( )
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                                                                                                      ( )1,...,1,0 −= Ni  .     

 ( ) ( )( )
( ) [ ]( ),,
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where  iii xxh −== +1,
ε
γ

β  . 

Now consider new boundary problem  
( ) ( )ii yxxyL ,ψε =  ,   on  ( )1, +ii xx        ( )1,...,1,0 −= Ni                                       (6) 

                         ( ) ( ) ( ) ( )11; ++ == iiiiii xyxyxyxy . 

It's clear that we have ( ) (xyxyi ≡ )  on  [ ]1,0   ( )1,...,1,0 −= Ni .  Now, we can write solution ( )xyi  
of the problem 6) in the form  

( ) ( ) ( ) ( ) ( )( ) [ ]( ) ,,,,, 121

1

+∈++= ∫
+

iii

x

x

II

i

I

ii xxxdssysfsxGxuCxuCxy
i

i

 

where  is Green function for operator   on the interval ( sxGi , ) εL [ ]1, +ii xx . 
From boundary conditions (6) we have    

  ,  ( ) ii yxyC == :1 ( ) 112 ++ == ii yxyC     ( )1,...,1,0 −= Ni .          
Thus, solution  of the problem (6) on the intervaliy [ ]1, +ii xx  will have the form  

      .                                                        (7) ( ) ( ) ( ) ( ) ( )( )dssysfsxGxuyxuyxy
i

i

x

x

II

ii

I

iii ,,
1

1 ∫
+

++= +

As it is  on  [ ]   ( ( ) ( )xyxyi ≡ 1, +ii xx 1,...,1,0 −= Ni ) an  y(x) is solution which is continously 
differentiable, that is  

( ) ( )
ii xxixxi xyxy =−= ′=′ || 1    for  ( )1,...,2,1 −= Ni  . 

 
Now, by derivating equality (7),  considering the last equality, we have 

( )( ) [ ( )( ) ( )( ) ] [ ( )( ) ]=′
−+

′
−

′
+

′
=+==−=−− iiii xx

II
iixx

I
ixx
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I
ii xuyxuxuyxuy 1111  

[ ( ) ( )( ) ( ) ( )( ) ] .,,,, 1

1

1

i

i

i

i

i

xxi

x

x
i

x

x

dssysfsxGdssysfsxG
dx
d

=−∫∫
−

+

−=                   (8) 

where ( ) ( )1,,1 +−== iiikxyy kk . 

Let       ( )( ) ( )( ) ( )( ) ( )( ) iiii xx
I
iixx

I
ixx

II
iixx

I
ii xubxuxucxua ===−=−

′
−=−

′
=

′
−= ;; 11 . 

Now, if we calculate , ,   ( )ia ib ic 1,...,1,0 −= Ni , we have 

( ) ( ) ( ) ( )ii
i

i
i

i
i hh
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a
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β
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β
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β
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tanhtanh
;
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;

sinh 11
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−−
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Thus, after differentiation of right side in last equality and some assortment, (8) takes the form 

( ) ( )( ) ( ) ( )( ) ,,,1 1

1

1

211 ⎥⎦

⎤
⎢⎣

⎡ +=+− ∫∫
+

−

−
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0;00 == Nyy    for  ( )1,...,1 −= Ni  .                             (9) 
Difference scheme (9) gives exact solution of the problem, in points of a fixed mesh on the interval.  
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Clearly, in general, we can’t find analytical solution of integrals on right side in (9). Therefore, we 
will approximate function f(x,y(x)) on the interval  [ ]1, +ii xx  as follows: 

( )( ) ( )( )ii xyxfxyxf ,, =    [ ]( )1, +∈ ii xxx           ( )1,...,1,0 −= Ni  . 
Now, from (9) and after assortiment, we have the new difference scheme 

⎥⎦

⎤
⎢⎣

⎡ +=+− ∫∫
+

−

−−−+− ),()(),()(1 1
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iε
   ( )1,...,2,1 −= Ni , 

where iy   ( )1,...,2,1 −= Ni ( 1,...,2,1 )−= Ni   are approximated values of solution y(x) which is 
solution  of the problem (1) – (3) in points   ix ( )1,...,2,1 −= Ni . 
From the last difference scheme we have 

),(),( 11
11111 ii

ii
ii

ii
iiiiii yxf

p
adyxf

p
adyaycya ++

−−++−

−
+

−
=+−       ( )1,...,1 −= Ni ,      (10)   

0;00 == Nyy  ,  where ( )1tanh −

=
i

i h
d

β
β

. 

Note that, matrix of the left side of  the system of equations (10) is threediagonal symmetric 
invertible, which with condition (3) gives us uniqueness of solution of the system (10). 
 
3. NUMERICAL EXPERIMENT 
Using difference scheme (10) we will consider and find approximated solutions of nonlinear reaction-
diffusion problem: 

83 −=′′ yyε   on  ( )1,0                                                                      (11) 
                                                ( ) ( ) 010 == yy . 
 
Using differece scheme (10) , Figure 1 shows  solution  )(xy  of our problem for the equdistance 
mesh of the interval [ , ( , ]1,0 0001.02 =ε 100=N ). 
 

Figure 1 
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Using differece scheme (10) , Figure 2 shows  solution  )(xy  of our problem for the non-equdistance 
mesh of the interval [ , ( , ]1,0 0001.02 =ε 100=N ). The non-equdistance mesh is constructed to 
give more points in a boundary lajer.  
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Figure 2 
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We can see from the graphic that the function ( )xy   is in “neighbourhood” of the constant function 

 for  . ( ) 2=xy ( )1,0∈x
 

Remark: All calculations in this paper were done using program package MATEMATIKA 5.0. 
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