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ABSTRACT 
Significant differences were noticed between the theoretical optimum pad slope [2], [3] and 
experimental values prescribed in catalogues [6], [7]. This paper tries to reveal the main cause of 
these differences and proposes a mathematical method that allows the calculus of the pressure in the 
lubricant film, based on Reynolds equation. Helicoidally shaped thrust pad were taken into account 
due to the simplicity of the lubricant film shape. 
Keywords: tilting pad bearing, Reynolds equation, helicoidally shaped pad. 
 
1. THE MATHEMATICAL MODEL 
Noticeable simplifications in Reynolds’ equation integration occur during the equivalence of the 
curve-shaped pad with a rectangular one. But these simplifications are accompanied by a distortion of 
the real phenomenon as follows: 1) due to the circular shape of the pad tangential speeds presents a 
radial gradient (U=rω, where r is the radius coordinate of a point on the pad and ω is the angular 
velocity of the shaft); 2) inertia effects inside the lubricant film are neglected and one of the main 
effect is the fact that the pressure inside the film decreases due to the lubricant leakage at the exterior 
boundary of the film in radial direction, which is proportional to angular velocity; 3) mathematical 
model in the theory is attained analyzing the fluid flow by means of Cartesian coordinates after which 
the axial bearing model is achieved through cylindrical coordinates transformation. 
The authors proposes the study of the pressure, friction and inertia forces distribution inside the 
lubricant film using a model which takes into account an infinitesimal cylinder sector rdθ, dr, dz, 
separated from a cylinder having the axial coordinate Oz1 (figure 1). 
 
2. GOVERNING EQUATION 
Mainly, simplifications considered in the paper are the same used relative to the lubricant flow in 
bearings, except for those regarding the curvature of the film, i.e. inertia forces and the variation of 
tangential speed with radius. In these assumptions, Reynolds equation can be written as: 
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Considering that the surface of the pad is helicoidally, it is obvious that the height of the film h is 
constant in radial direction, given by: 

θ⋅−+= ahmh 2)1(  (2) 
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Equation 1 was studied in respect with its coordinates, θ and r. 
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Figure 2. Notations for axial bearing 
Figure 1. Forces distribution for 

cylindrical shaped fluid film  
 

Case 1: for a given radius, r=const., so 0=
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In these assumptions eq.(1) becomes: 
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where  and  22 rb ⋅⋅= ωρ 26 rc ⋅⋅⋅= ωη
The solution of the equation (3) is: 
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Keeping only significant members of the series (neglecting terms corresponding to h3 and h5), and 

substituting 
2h

h
=ε , and notifying that the integration constants C1 and C2 are computed using the 

following boundary conditions: ( ) apmp =+1  and ( ) app =1 , the lubricant pressure inside gap in 
circumferential direction is given by: 
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where A, B and C are coefficients. Maximum pressure in circumferential direction develops at the 

point where 0=
∂
∂
θ
p  or 0=

∂
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h
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The other two solutions are imaginary ⎟
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should be searched inside the range ( 1,1 )+m , and it can be computed through numerical methods. 
Case 2: for a given angle .const=θ , pressure depends only on radius, i.e. 0=∂∂ θp . In these 
assumptions eq.(1) becomes: 
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The solution of eq.(8) is: 
( ) ( )rrCrCrcbrp ln21)( 2 ++−=  (9) 

Constants C1 and C2 are computed using the following boundary conditions:  and 
 

( ) apRp =1

( ) apRp =2

Pressure in radial direction should therefore be: 
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Maximum pressure develops at the point where 0=
∂
∂

r
p ; the solution of the equation is: 
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3. OPTIMUM CONDITIONS 
Two conditions were considered to achieve the optimum for the thrust bearing: 
 Load maximization 
 Friction minimization 
The first assessment condition means that for given load conditions (W), velocity (V), and dimensions 

θΔ,, 21 RR , maximum pressure should be obtained modifying the slope of the pad m. The second 
assessment is equivalent to the minimization of the friction coefficient, μ [4]: 
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Minimum value for this coefficient occurs when ( ) 0=∂ mmμ , yielding to the following equation in 
m: 

( )( ) ( ) ( ) ( ) ( ) 03241ln181ln21 222 =+−++++++ mmmmmmmm  (13) 
The solution of this equation is . 80448.2=m
 
4. CONCLUSIONS 
Analyzing the influence of pad slope m on pressure, it can be noticed that significant differences 
occurs between the classical model of Reynolds equation and the equation (1). Sensible higher values 
were noticed considering eq.(1), along with the fact that the slope for the diagrams were more acute, 
so that it can be concluded that in the case of the authors’ model the point of maximum load is very 
sensible relative to pad slope. Maximum pressure is achieved for m=1.4 in classical assumptions, 
while considering the real shape of the pad, the value for m is between 1 and 1.1, in good 
correspondence with producers’ catalogues [6], [7].  
Dimensionless coordinate ε has lesser influence on pressure than the slope m in circumferential 
direction, little higher values for pressure being notified in case of considering circular shape for pad. 
In radial direction differences were insignificant, both for m and r parameters. 
Considering the minimization of friction forces together with the maximization of the load, it was 
noticed that an optimum value for m is included in the range [1, 2.804], the value 1 corresponding to 
maximum load, and 2.804 for minimum power loss through friction. 
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