
11th International Research/Expert Conference 
”Trends in the Development of Machinery and Associated Technology” 

TMT 2007, Hammamet, Tunisia, 05-09 September, 2007. 
 
 

VISUALIZATION WITH THE DIRECTX 
 
 

Pavel Pokorny 
Thomas Bata University in Zlin, Faculty of Applied Informatics 

Mostni 5139, Zlin 
Czech Republic 

 
ABSTRACT 
The modern control systems are composed from the more layer structure. For example, in the 2-layer 
structure can be the first layer programmable machine in the industry environment connected to the 
measured and controlled process. And the second layer can be personal computer with visualization 
and control software. Both phases are connected via the serial or wireless connection. This paper 
describes programming the visualization applications with the help of DirectX. 
Keywords: Visualization, DirectX, programming. 
 
1. INTRODUCTION 
Technical visualization is an important aspect of product development. People from many disciplines 
and with varying requirements across an organization need to view and manipulate product data in 
different ways. CAD application is the traditional tool of the engineer who needs to create and edit the 
geometry, but others need to see this data or convey information in other ways to that of the engineer. 
For example, many users work in a visualized system environment and require a neutral viewing 
format within the organization. Therefore product visualization technology has been developed. 
The modern control systems are composed from the more layer structure. The highest layer can be 
personal computer with visualization and control software. We can use varied applications for the 
controlling and visualization. Intouch or ControlWeb are most used. These applications have some 
advantages (for example variability and increase engineering productivity), but some disadvantages 
too (for example they are not good for small control systems and these applications are commercial - 
they are high priced). 
The commercial applications offer outstanding ease of use and simple-to-configure graphics and 
significant enhancements that result in tremendous improvements in both operational and engineering 
productivity. Powerful wizards enable users to quickly create and deploy customized applications that 
connect and deliver real-time information. 
In the next chapters one way is described, how to create simple visualization application in the 
Widows platform. It includes the creation of Widows program project with the help of Win32 API, 
implementing DirectX in this project (manipulating with the graphics in DirectDraw and Direct3D) 
and a short example to visualize simple control system. 
 
2. WINDOWS PROGRAM PROJECT 
To create a simple Windows project, it was selected C/C++ language and the compiler Microsoft 
Visual C++ 6.0. The program will be use the native Windows application programming interface 
(API), which is available for Windows95/98/ME/NT/XP. This programming interface is based on the 
features of Windows environment. The characteristic for these platforms are multitasking and 
multithreading. Windows possesses a graphical user interface (GUI), sometimes also called a "visual 
interface" or "graphical windowing environment." All GUIs make use of graphics on a bitmapped 
video display. Graphics provides better utilization of screen real estate, a visually rich environment 
for conveying information. From the programmer's perspective, the consistent user interface results 

 1511



from using the routines built into Windows for constructing menus and dialog boxes. All menus have 
the same keyboard and mouse interface because Windows handles this job. [3] 
The most obvious windows adorning our desktop are application windows. These windows contain a 
title bar that shows the program's name, a menu, and perhaps a toolbar and a scroll bar. Another type 
of window is the dialog box, which may or may not have a title bar. The user sees these windows as 
objects on the screen and interacts directly with them using the keyboard or the mouse. Interestingly 
enough, the programmer's perspective is analogous to the user's perspective. The window receives the 
user input in the form of "messages" to the window. A window also uses messages to communicate 
with other windows. Getting a good feel for messages is an important part of learning how to write 
programs for Windows. [3] 
To create a Windows application in Visual C++ 6.0, click on the menu File-New. In the project 
window we must select the type of application. The standard Windows application has this type as 
"Win32 Application". After enter name of project and directory, where it will be saved we can click 
on the button "OK". On the following window we select type of application. We can switch between 
the empty, simple Win32 application and simple "Hello word" application. The simplest way is to 
select "Simple Win32 application". There will be created project with the source code of base 
Windows application. This code will be contains the creation of window class (here are defined 
features of this window), its registering and the creation of the window. After this the window is 
displayed and runs loop of Windows messages processing. We can respond to the required messages 
in the message procedure and the others messages are returned to Windows system. The example of 
these messages are mouse click, pressing keys or the switch between the activate/deactivate window. 
 
3. DIRECTX 
DirectX is the Microsoft collection of APIs that are designed to give game developers a low-level 
interface to the PC hardware that is running Windows. On version 9.0 (the last version for Windows 
XP), each DirectX API component provides access to different aspects of the hardware, including 
graphics, sound, and networking, all through a standard interface. This interface allows developers to 
write their games using one set of functions, regardless of the hardware they’re being run on. [4] 
The DirectX API contains multiple components, each one representing a different aspect of the 
system. Each API can be used independently, thereby adding only the functionality, which our 
application requires. The DirectX components are DirectX Graphics (it handles all graphics output), 
DirectInput (all user input keyboard, mouse, joystick, gamepad), DirectPlay (network support for our 
applications - communication with other computers allows more than one person to play), 
DirectSound (sound effects or background music), DirectMusic (dynamic soundtrack, which can be 
played back on a timed schedule or adapted to the gameplay using pitch, tempo, or volume changes) 
and DirectShow (cut scenes and streaming audio – for example playing AVI, MP3, MPEG, and ASF 
files). 
In this paper there we describe only work with DirectX graphics. In includes DirectDraw and 
Direct3D. Next paragraphs contain informations about these APIs. Now we show, how to implement 
the support DirectX API into our Windows applications. 
This implementation is not difficult. We must download and install the DirectX SDK (software 
development kit) in our computer. It is free [1] and contains DirectX required header files, libraries, 
examples, documentation. Then we need to set the path into header and library directories into our 
compiler. It is set on the text menu "Tools-Options" and card "Project and solutions". The final step is 
to include header files and libraries into our project. We include the required files only. For the 
example, when we want to create DirectDraw application, we include the header file "ddraw.h" and 
libraries "dxguid.lib" (in contains the ground of DirectX algorithms) and "ddraw.lib". 
 
3.1. DirectDraw 
DirectDraw is a 2D API. That is, it contains commands for 2D rendering and does not support 3D 
hardware acceleration. A programmer could use DirectDraw to draw 3D graphics, but the rendering 
would be slow compared to an API such as Direct3D which does support 3D hardware acceleration. 
As of DirectX version 8.0, DirectDraw was merged into a new package called DirectX Graphics, 
which is really just Direct3D with a few DirectDraw API additions. DirectDraw can still be used by 
programmers, but they must use older DirectX interfaces (DirectX 7 and below). [2] 

 1512



DirectDraw has the limiting for 2D graphics. But in has some benefits. The fist benefit is low 
hardware requirements. The applications based on DirectDraw need small memory and CPU/GPU 
calculation time. The second benefit is the simplest source code of these applications. Such source 
code is better managed and there is easier error removing. And the last benefit is the enough graphic 
visualization. 
 
3.2. Direct3D 
Direct3D is a 3D API. That is, it contains many commands for 3D rendering, but contains few 
commands for rendering 2D graphics. Microsoft strives to continually update Direct3D to support the 
latest technology available on 3D graphics cards. Direct3D offers full vertex software emulation but 
no pixel software emulation for features not available in hardware. For example, if a program 
programmed using Direct3D requires pixel shaders and the video card on the user's computer does not 
support that feature, Direct3D will not emulate it. Direct3D is formed by two big APIs. Retained 
Mode and Immediate Mode. Immediate mode provides an interface to every video card 3D functions 
(lighting, materials, clipping, transformations, textures, depth buffering...). Retained mode is built 
over the previous one and provides higher level graphics techniques such as hierarchy and animation. 
Immediate mode is preferred by video game developers because it gives them more freedom to use 
graphics techniques. [5] 
In Direct3D is the computer graphics future. It supports many visualization techniques to show more 
real scenes. But when the displaying is more realistic, then the hardware requirements are increased. 
Therefore, this API is used on most modern computers. Source code of these applications is more 
extended and less transparent. And it must not to be more cleared in the visualization of the 
technological process. 
 
4. SHORT EXAMPLE WITH DIRECTDRAW 
In this chapter we describe a simple visualization example with the help of Win32 API and 
DirectDraw. It will be control of speed of mixer. The mixer speed will be numerical displayed (the 
better way is the possibility to set it). But more illustration is to graphics displaying this mixer speed. 
The simple scheme of mixer is on the figure 1 left. When we want to display rotation of this mixer we 
need some phases of positions. 
The starting position is attained, when the mixer is rotated to 360 degree. Because this displaying 
needs to be continuous, there we must have some phases of rotation. Acceptable is 24 phases (each 
mixer position is rotated to 15 degree). Then we have 24 pictures in some raster graphics format (for 
example *.bmp, *.png or *.jpg) and these pictures will be stepwise changed (the speed of change 
these pictures on the screen will be depend on the speed of mixer) and this change displaying give us 
the animation effect the rotated mixer. The first four phases of this rotation (to 15 degree) are shown 
on the figure 1. 

 
Figure 1. Four phases (positions) of mixer 

 
This implementation to the Win32 program with DirectDraw is not difficult. The DirectDraw is based 
on surfaces. Surfaces are blocks in computer memory, where are saved displaying informations. The 
base (and the most important) surface is the front buffer and it contains, what we see on the screen. 

 1513



The second base surface is the back buffer. Here are saved displaying informations, which will be 
displayed in the next step. When it is the right time to display it, these two surfaces are flipped or the 
back buffer is transferred to front buffer and then we can save new graphics informations to the back 
buffer. This process helps to prevent unpleasant flicker effect. 
In DirectDraw we can have many surfaces. Except the one front buffer and one or more back buffers, 
here exist so-called off-screen surfaces. These surfaces contain graphics informations and as 
necessary they are transferred to the back buffer. Here are saved pictures often and here we can save 
our pictures (phases) of rotated mixer. They can be saved in the 24 separated surfaces or in one 
surface only. When they are saved to the separated surfaces, we need to write more source code to 
serve, which from the picture needs to be displayed, but this code is transparent. Only one surface has 
the benefit of short and efficient source code, but it is not very transparent. Additional, the pictures 
must to be periodically placed in this one surface. 
These described algorithms are easy to create them and because DirectDraw has not exacting system 
and hardware requirements, to run this application we need not the modern computer. 
 
5. CONCLUSION 
The using of the visualized control systems is very popular at presents. The modern control 
applications, which use the visualize give us better illustration of the controlled process. To this 
visualization, we can work with the commercial visualization programs (like Intouch or ControlWeb) 
or we can program own application. The benefit of commercial programs is the universality and the 
relative easy possibility of large applications creation. Against this, they are very costly and they have 
frequently needless computer requirements. 
The benefit of the application, which we develop, is the fact, that it is "made to measure" – there are 
not needless system and hardware requirements. But in dependency of difficulty of control system, 
this application can be complicated to program it.  
The example on this paper presents simple control application based on Win32API and DirectDraw  
to visualize the controlling of mixer speed. This is only simulation of this process, but, it should not 
be very difficult to implement it into the real environment. 
                                                     
6. ACKNOWLEDGEMENTS 
This work was supported by the Ministry of Education of the Czech Republic in the range of research 
projects No. MSM 7088352102. 
 
7. REFERENCES 
[1] Commercial electronic documentation: Microsoft DirectX SDK [on line]. Place of edition: Microsoft 

Corporations, 1290 Avenue of the Americas, Sixth Floor, New York, 2007. 
[cit. 2.5.2007]. Available on: < http://www.microsoft.com/directx>. 

[2] Dunlop, R., Shepherd, D. & Martin, M.: Sams Teach Yourself DirectX 7 in 24 Hours. 1th ed. Sams 
Publisher, 1999, 450 p. (ISBN 067231634X.) 

[3] Petzold, Ch.: Programming Windows. 5th ed. Microsoft Press, 1998, 1478 p. (ISBN 157231995X). 
[4] Sanchez, J., Canton, M.P.: DirectX 3D graphics programming bible. 1. ed., Hungry MindsBk&CD-Rom 

edition, 780 p. (ISBN 0764546333) 
[5] Walnum, C.: Programujeme grafiku v Microsoft Direct3D (in Czech). 1. ed., Computer Press, Praha 2004. 

360 p. (ISBN 8025101363). 
 

 1514


