UTILIZATION OF INFORMATION SYSTEM FOR INJECTION MOLDING TOOLS

Lubomír Vašek Faculty of Technology, Tomas Bata University in Zlin Nám.TGM 275, Zlín Czech Republic Michal Staněk Faculty of Technology, Tomas Bata University in Zlin Nám.TGM 275, Zlín Czech Republic

ABSTRACT

This article describes utilization of the developed information system NAHOS for tool management system for use in injection molding to handle used tools (molds). This information system was developed in last years in cooperation of Faculty of Technology and Faculty of Applied Informatics of Tomas Bata University in Zlin, Czech Republic and in last period was applied in area of injection molding. There are some specific properties compare to tool management in other manufacturing processes, for example in machinery – much more technological information connected to own technological process, more graphical data etc. Described information system gives for users the possibility store all needed information and data as attributes of molds, use these attributes for finding appropriate tool (mold) and simple use stored data in injection molding process. **Keywords:** tool management, information system, injection molding, tools

1. INTRODUCTION

Today, injection molding is probably the most important method of processing plastics in the production of consumer and industrial goods, and is performed everywhere in the world. Especially application of this method in automotive and electronic industry increases usage of injection molding. Most of the companies producing injection molded parts have a lot of tools (injection molds) where each of them is unique. Injection mold is very expensive and complicated assembly of hundreds parts. It is necessary to have detailed database of tools in electronic version containing all information about the mold and injection molding process. To achieve that, we must have possibility to get fast and simply exact information about the location and state of tools and about their technological characteristics. The application of such methods is possible with the use of information technologies – it is effective to form an information system for tool management (ISTM) [2]. This paper describes application of such information system, called NAHOS [1], developed in Tomas Bata University in Zlin and Technical University in Brno, into injection molding production.

2. TOOL MANAGEMENT IN INJECTION MOLDING PRODUCTION

It is very important to have detailed information about these tools because of their next usage and maintenance. The review of this information is shown in table in Table 1. The data for injection molding tools have different form – they are texts, numbers, tables, pictures, graphs. All the data types are stored in database and handled by described ISTM. This application has been tested on injection molds owned by our university. There are two injection molds for the different parts presented in this paper (Figure 1 and Figure 2).

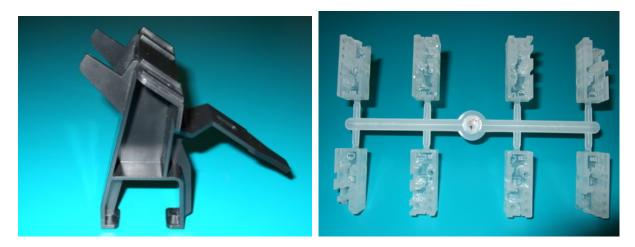


Figure 1. Injected part – "clamp"

Figure 2. Injected part – "electro"

	MAIN DATA						
name, number	weight	dimension	proa				
	DESIGN O	F INJECTION MO	LD				
multiplicity of	runner and gate	aiastion system	14.01				

name, number	weight		dimension		product description		
	DESIG	N OF IN	JECTION	MO	LD		
multiplicity of	runner and gate	e ej	ejection system		normalized parts		
injection mold	system		cylindrical ejector pin prismatic ejector pin stripper plate mold three plate mold screw mechanism				
	cold runner	cyl			yes (producer) no		
		pin					
	hot runner (produce	er) pris					
		pin					
	combination	stri					
		mo					
		thre					
		cor	combination				
	TECHNO	OLOGIC	AL PARA	мет	TERS		
injection molding cycle	njection molding injection unit cycle		cooling system		closing unit		clamping
course of pressure	melt temperature	water		clar	nping force	e so	crews
course of	temperature zones	oil			d speed		amps
temperature	·····P ······ -····				p		F -
pvT diagram	injected volume	temperature unit (type)					
I B B	J						
	injection rate		temperature				
	injection pressure						
	<i>v</i>	RATION	PARAME	TER	S	I	
number of cycle	and		storage rules		tr	ansport and	
0.0	correcti						installation
			place				
				lubrication			
					vention		
		con obion prevention					

Table 1.Data structure and contents for injection molding tools

The user interface is based on the forms used for data presentation and for inputs. The forms are created in the Form Editor (a part of the NAHOS). Examples of used forms are in Figure 3 (data overview for mold for part from Figure 1) and Figure 4 (list of injection molds)

rmy_edit							
			Zadávání nové formy Formy	у			
Název Hmotnost	im-07-001	Vyhledání ? Výrobce ARNO Výrobek [B@1066d88 Soubor	Nový n	Konstrukce Násobnost Vtokový systém Vyhazovací systém Normálie 🛛 🗸	1 Cold Ejectors	Obrázek	Najdi
	yklus Tlak:	Teplota:	I I I I I I I I I I I I I I I I I I I	ovozní paramet Parametry Počet cyklů Opravy Úpravy Transport a možn	120456 No No Crane	Skladovac místo mazání ochrana	1 předpis A-01-003 Oil
Vstřikovací je Teplota tave Vstřikovací Vstřikovaný Vstřikovací	ednotka eniny 265°C rychl 30 mm/s ý objem 37,5 cm3	T Pásma		Poznámky			
Chladící sys Upinání	tiém Water Clamps	Uzaviraci jednotka sila 550 j posuv 350 j			Storno	ОК	

Figure 3. Page form for injected part and its mold – "clamp"

Přehled forem										
Kod	Název	Hmotnost	Rozměry	Výrobek	Násobnost	Vtokový systém	Vyhazovací systém	Normalie	Počet cyklů	Místo
1	a			[B@9b42e6	a			false	а	
M-07-001	Injection mold - clamp	105 Kg	246x246x305	[B@14520eb	1	Cold	Ejectors	true	120456	A-01-0.
M-07-002	Injection mold - Electro	135 Kg	296x246x200	[B@1742700	8	Cold	Ejectors	true	186567	A-02-0.
M-07-002	Injection mold - Electro	135 Kg	296x246x200	[B@1742700	8	Cold	Ejectors	true	186567	A-1

Figure 5. List of injection molds recorded in database

3. STRUCTURE OF THE INFORMATION SYSTEM FOR TOOL MANAGEMENT IN INJECTION MOLDING

Information system for tool management is build as a modular system - see Fig. 6. Individual modules are determined according to the functional requirements for tool management in injection molding production. Descriptions of functions for individual modules are as follows:

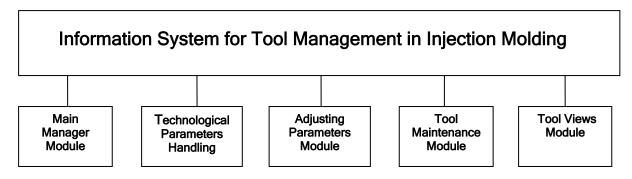


Figure 6. Structure of Information system for tool management

Main manager module and Tool views module

These modules are intended for main functions of information system (f.e. create new data records, edit existing, drop not more useful records, search objects by specific parameters, show results etc.).

Module for technological parameters handling

Injection molding is very complex process from the technological point of view. There is amount of technological parameters (f.e. melt temperature, injection pressure, holding pressure, etc.) that are dependent on injected material and form of mold tool. Because there are thousands of the different materials and each of them needs special adjustment for their processing to the final product, it is very useful have all needed data in database and prepare parameters for production with aid of this tool management system.

Module for adjusting parameters

Injection molding is process containing different variety of the adjustments. Especially injection molding machine parameters set up is one of the most important stages during preparation and start of production plastic parts. There are two basic groups of the set up. The first is connected to technological parameters, the second group is connected to clamping unit which clamping and handler the injection mold (for example: clamping force, speed of mold movements, ejectors movements). All these data could be saved in the database including pictures. There is an also possible archive the setup files directly from the injection molding machine and then sequentially load this data in machine which could make final adjustment of the process faster.

Module for tool maintenance

The maintenance of the molds is very important and necessary item of quality mass production. There are usually a lot of parts needing different periodic maintenance in the mold (for example: lubrication of the guide parts). Two types of the period maintenance could appear. One is the time period of the maintenance and the second is the maintenance after specified amount of the cycles.

4. CONCLUSIONS

Described information system for injection molding tools was developed and tested in laboratory of Institute of Production Engineering of Faculty of Technology, Tomas Bata University in Zlin. From the testing come some recomendation for improvements of the system. After they will be fully realised, the system will be implemented in industrial injection molding production.

5. ACKNOWLEDGMENT

This work was supported by the Ministry of Education of the Czech Republic in the range of the project No. MSM 7088352102.

6. REFERENCES

- Vašek L., Hulman M.: Tool Management in CIM systems 10th International Research/Expert Conference TMT 2006, Barcelona-Lloret de Mar, Spain, 11-15 September, 2006.
- [2] Molnár Z., Juřenčák B., Riessler P.: Informační systém podniku. 1st ed.. Univerzita Tomáše Bati ve Zlíně, Fakulta managementu a ekonomiky. Zlín. 2001.