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ABSTRACT 
The controllers of standard PI and PID type play the essential role in contemporary industrial 
practice. Therefore, the simple techniques of controller tuning are still demanded, especially in case 
that these algorithms are able to cope with various uncertain conditions. The contribution is focused 
on control design for interval systems using the computation of all possible stabilizing PI controllers 
in combination with the choice of the final one through an algebraic approach. The needful amount of 
theory is followed by an example. 
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1. INTRODUCTION 
The mathematical model containing interval parameters is a common tool for description of 
imprecisely known industrial processes. And despite the existence of many advanced control 
technologies, an easy and effective way of conventional PI or PID control design for these systems is 
still very topical. 
This paper combines the method of determination of all possible stabilizing PI controllers with fixed 
parameters for interval plants [6] and an algebraic control synthesis [4]. The enclosed illustrative 
example presents the application of this technique during robust stabilization of fourth order interval 
plant with integrative behaviour. 
  
2. COMPUTATION OF STABILIZING PI CONTROLLERS 
A possible approach to calculation of all stabilizing PI controllers based on plotting the stability 
boundary locus is proposed in [6]. The method supposes the classical closed-loop control system with 
controlled plant: 
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First, one needs to use the substitution s jω=  in the plant (1) and subsequently to decompose the 
numerator and denominator of this transfer function into their even and odd parts: 
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Then, the expression of closed-loop characteristic polynomial and setting the real and imaginary parts 
to zero lead to the equations: 
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Simultaneous solving of these relations and plotting the obtained values into the ( ),P Ik k  plane result 
in the stability boundary locus, which splits the ( ),P Ik k  plane up to the stable and unstable regions. 
The determination of the stabilizing one(s) can be done via a test point within each region. 
Furthermore, this technique can be embellished with the Nyquist plot based approach from [5] to 
avoid potential problems with proper frequency gridding. In this refinement, the frequency axis can be 
divided into several intervals by the real values of ω  which fulfill: 

 [ ]Im ( ) 0G s =  (5) 

Such intervals are then sufficient for testing. 
 
3. IMPROVEMENT OF THE METHOD FOR INTERVAL SYSTEMS 
So far, the area of stabilizing controller coefficients for a given plant with only fixed parameters can 
be computed. However, the paper by Tan and Kaya [6] has improved the stabilization also for interval 
plants using the simple idea of its combination with the sixteen plant theorem [1]. In compliance with 
this principle, a first order controller robustly stabilizes an interval plant if and only if it stabilizes its 
16 Kharitonov plants, which are defined as: 
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where { }1 2, 1,2,3,4i i ∈ ; and 1( )B s  to 4 ( )B s  and 1( )A s  to 4 ( )A s  are the Kharitonov polynomials for 
the numerator and denominator of the interval system (6), respectively. 
Remind that the Kharitonov polynomials for an interval polynomial: 
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can be constructed using the upper and lower bounds of interval parameters according to the rule [2]: 
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The stabilization of an interval plant is grounded in the stabilization of all 16 fixed Kharitonov plants 
together, and so the final stability region is given by intersection of all partial regions. 
 
4. THE CHOICE OF A CONTROLLER 
The suitable choice of a controller from the set of stabilizing ones is an important issue. In this paper, 
the tuning method based on an algebraic approach in the ring of proper and stable rational functions is 
used [3, 7]. It takes advantage of Youla-Kučera parameterization and conditions of divisibility. More 
details about the methodology can be found e.g. in [4]. 
Under assumption of controlled system (1) in the form of first order plant: 
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the parameters of PI controller (2) can be calculated from relations: 
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where 0m >  is a tuning parameter. 
 
5. AN ILLUSTRATIVE EXAMPLE 
Suppose that controlled process is described by interval transfer function adopted from [6]: 
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The goal is to find all robustly stabilizing PI controllers (see sections 3 and 4), choose one of them via 
algebraic approach (section 5) and verify stability of closed control loop by simulation. 
First, consider e.g.: 
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as the first of sixteen Kharitonov plants. The equation (4) takes the concrete form: 

 4 2 4 20.1 200 ; 9.5 345P Ik kω ω ω ω= − + = − +  (13) 

Using of (5) and consequent stability test for two obtained intervals lead to the range of the frequency 
( )0; 6.0263ω∈ , which is necessary for computing/plotting the stability boundary locus. The 

analogical procedure has been done for all 16 Kharitonov plants. However, in this specific case, the 
locus only 8 systems is enough to investigate, because the nominator of (12) takes only two extreme 
values and the construction of Kharitonov polynomials would be redundant here. 
The figure 1 provides the graphical representation of the stability boundary locus for 8 Kharitonov 
plants, while the figure 2 brings closer look to the intersection, which constitutes final stability region 
for the interval plant (11). 
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Figure 1. Stability regions for 8 Kharitonov plants
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Figure 2. Stability region for the interval plant 
 
Now, a certain controller must be chosen from the possible ones. The outlined algebraic approach is 
employed for this purpose. However, control quality is not the matter of research in this contribution. 
The controller has been tuned just to demonstrate robust stability of the closed control loop. 
The nominal system has been obtained using the middle values of interval coefficients in (11) and 
then via the very simple approximation, i.e.: 
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For example, the tuning parameter 1m =  gives the controller parameters (10): 

 360; 180P Ik k= =  (15) 

which lie in the stability region from the figure 2. 
Finally, the figure 3 shows the control responses of the loop with this PI controller and 4096 
“representative” systems from the interval family (11). Each interval parameter has been divided into 
7 subintervals and thus these 8 values and 4 parameters result in 48 4096=  systems for simulation. As 
can be seen, the controller (2) with parameters (15) really stabilizes the interval plant (11). 
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Figure 3. The output signals of 4096 “representative” plants from the interval family 

 
6. CONCLUSION 
The contribution has presented a possible PI controller design for interval systems based on the 
stability region determination and the selection of the proper regulator through the algebraic 
methodology. The fourth order integrative interval plant has been successfully stabilized in the 
illustrative example. 
  
7. ACKNOWLEDGEMENT 
The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under research 
plan MSM 7088352102 and by the Hlávka Foundation. This support is very gratefully acknowledged. 
 
8. REFERENCES 
[1] Barmish, B. R., Hollot, C. V., Kraus, F. J., Tempo, R.: Extreme point results for robust stabilization of 

interval plants with first order compensators. IEEE Transactions on Automatic Control, Vol. AC-37, 1992, 
pp. 707-714. 

[2] Kharitonov, V. L.: Asymptotic stability of an equilibrium position of a family of systems of linear 
differential equations. Differentsial'nye uravneniya, Vol. 14, 1978, pp. 2086-2088. (In Russian). 
(Translation in Differential Equations, Vol. 14, 1979, pp. 1483-1485). 

[3] Kučera, V.: Diophantine equations in control – a survey. Automatica, Vol. 29, No. 6, 1993, pp. 1361-1375. 
[4] Prokop, R., Corriou, J. P.: Design and analysis of simple robust controllers. International Journal of 

Control, Vol. 66, No. 6, 1997, pp. 905-921. 
[5] Söylemez, M. T., Munro, N., Baki, H.: Fast calculation of stabilizing PID controllers. Automatica, Vol. 39, 

No. 1, 2003, pp. 121-126. 
[6] Tan, N., Kaya, I.: Computation of stabilizing PI controllers for interval systems. In: Proceedings of the 

11th Mediterranean Conference on Control and Automation, Rhodes, Greece, 2003. 
[7] Vidyasagar, M.: Control system synthesis: a factorization approach. MIT Press, Cambridge, M.A., 1985. 


