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ABSTRACT 
In this paper a new artificial potential, suitable for nominal control of the repetitive robot motion, is 
proposed. Starting with this potential a normalized energy equation has been established. This 
equation was the source for derivation of a nominal robot velocity as the function of the initial and 
final positions, as well as the limited maximal nominal velocity of the robot motion. For derivation of 
nominal robot acceleration, as the function of the same parameters, the artificial potential relation 
has been employed. Both nominal velocity and acceleration equations satisfy the condition of the 
repetitive motion: boundary velocities are equal to zero and boundary accelerations are positive on 
the first side and negative on the second one. The nominal transient position relation is twice 
continuously differentiable resulting in the mentioned nominal velocity and acceleration equations. 
The obtained nominal velocity and acceleration relations are very simple for calculation and can be 
applied to the real time nominal control of repetitive robot motion.  
Keywords: artificial potential, nominal velocity and acceleration, nominal repetitive robot control. 

1.  INTRODUCTION 
There exist a lot of nominal robot control algorithms mostly given as nominal velocity profiles of the 
robot motion. The main problem of the existing nominal robot control algorithms is in their real-time 
realization. Because of complex nominal velocity profiles and complex interactions in the robot 
structure, the related control of the fast robots can not be calculated in the real-time. Especially, in the 
case of the repetitive nominal control both nominal velocity and acceleration equations must satisfy 
the main condition of the repetitive motion: boundary velocities should be equal to zero and boundary 
accelerations should be positive on the first side and negative on the second one. An important subject 
in control of mechanical systems is tracking repetitive nominal signals and attenuating periodic 
disturbances. Many tracking systems, such as computer disk drivers, rotation machine tools and 
assembly robots, have to deal with repetitive nominal signals and disturbances.  
Generally, repetitive controllers can be classified as being either internal model based or external 
model based [1]. The control algorithms with internal models are linear and have repetitive signal 
generators [2, 3]. On the other side, the control algorithms with the external models are based on the 
feedforward compensation of the inverse dynamics and their disturbance model is placed outside the 
basic feedback loop [4, 5]. The main advantage of the control algorithms with internal models is that 
they are linear, making the analysis and implementation easier. The main disadvantage of that control 
algorithms is that the stability is almost entirely governed by the feedback loop of the repetitive 
compensators. In the case of the external model approach there is no significant influence on the 
stability margin of the control system. Meanwhile, the analysis and implementation of the control 
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algorithms are more complex by the external model approach. In the reference [6] a new class of 
passive internal model based repetitive controllers for robot manipulators is proposed. In this 
approach the passive interconnection of the controller with nonlinear mechanical system has no 
influence to the stability margin like in exact feed-forward compensation of robot dynamics [7, 8]. An 
interesting approach to synthesis of the nominal control of the repetitive robot motion has been 
presented in [9]. This approach is based on the analogy to the basic equations of the universe motion 
[10]. The main disadvantage in that approach is the condition that the generalized (joint) coordinates 
should be different from zero. Of course, this limitation can always be avoided by using the related 
coordinate transformation, but it slow down the calculation of the nominal control variables. 
In order to find out a simple and fast nominal control algorithm in this paper a new artificial potential, 
suitable for nominal control of the repetitive robot motion, is proposed. Starting with this potential a 
normalized energy equation has been established. This equation was the source for derivation of a 
nominal robot velocity as the function of the initial and final positions, as well as the limited maximal 
nominal velocity of the robot motion. For derivation of nominal robot acceleration, as the function of 
the same parameters, the artificial potential relation has been employed. Both nominal velocity and 
acceleration equations satisfy the condition of the repetitive motion: boundary velocities are equal to 
zero and boundary accelerations are positive on the first side and negative on the second one. The 
obtained nominal velocity and acceleration relations are very simple for calculation and can be 
applied to the real time nominal control of repetitive robot motion.  
This paper is organized as follows. The synthesis procedure of the nominal control of the repetitive robot 
motion, based on an artificial potential, is presented in the second section. Some comments and 
conclusions are emphasized by the third section, while reference list is given by the forth (last) section.  
 
2.  SYNTHESIS OF NOMINAL CONTROL OF REPETITIVE ROBOT MOTION  
Following the idea to employ an artificial potential for design a nominal control of repetitive robot 
motion one can establish the related normalized energy equation:  

                                   ( )i i

2 2 22
2m m ii

i i
v v kq 1 K q , i 1,2,...,n,

2 2 2
+ − = =

&
                      (1) 

where  and  are generalized (joint) coordinate and velocity of the i-th robot link, is the 

limited maximal nominal velocity, Ki and ki are related constants and n is the number of the robot 
links. The first part on the left side of the equation (1) represents the normalized kinetic energy, the 
second one is the normalized potential energy, while the right side of the equation (1) represents the 
normalized total (kinetic + potential) mechanical energy. An artificial scalar potential Vpi of an 
artificial potential field in the equation (1) is described by the following relation:  
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The normalized energy equation (1) can be transformed into the new relation: 
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Consequently, the related velocity equation can be derived from (3) in the following form: 
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The notation (+) is valid for motion in a positive direction, while the notation (-) is related to the 
negative one. The acceleration equation can be derived directly from the artificial scalar potential (2): 
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The velocity equation (4) has two zeros, where the first one is at the initial position qoi and the second 
one is at the final position qei : 
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From the relations (6) one can calculate the parameters ki and Ki as the functions of the initial and 
final positions:  
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Substituting parameters ki and Ki from (7) into the relation (4) one obtains the velocity equation as the 
function of the initial and final positions: 
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On the other side, the substitution of the parameters ki and Ki from (7) into the relation (5) gives the 
acceleration equation also as the function of the initial and final positions: 
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From the relation (9) we can see that the zero acceleration is occurred at the position qci : 
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For qi  <  qci  the acceleration is positive and for qi  >  qci  the acceleration is negative. Including        qi 
= qci into the velocity equation (8) one obtains the maximal velocity at that position: 
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Thus, the maximal velocity is always less or equal to the limited maximal nominal velocity vmi. At the 
initial and final positions we have the following values of the velocities and accelerations: 
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The relations (12) show that both nominal velocities and accelerations satisfy the condition of the 
repetitive motion: boundary velocities are equal to zero and boundary accelerations are positive on the 
first side and negative on the second one. Now, one can established the following vector relations: 
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where  is a real n-vector of generalized (joint) coordinates, and are the related generalized 
velocity and acceleration vectors and  U(t) is a real n-vector of the nominal robot control. Following 
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the relations (8) to (13) one can implement the nominal control algorithm for control of the nominal 
repetitive robot motion: 

                                                             U(t) E(q)q F(q,q).= +&& &                                            (14)  

In the relation (14), E( ) is a real (n x n)-inertial matrix and F(q, ) is a real n-vector of centrifugal, 
Coriolis and gravity forces. Both E(q ) and F( ) include the actuator parameters and related 
constant connections between manipulator and actuators. Thus, the nominal control of the repetitive 
robot motion can be calculated in a real-time by employing very simple relations (8) to (13) and the 
equation (14). 
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3.  CONCLUSION 
The synthesis procedure of the new nominal control of the repetitive robot motion, based on an 
artificial potential, is presented and the related normalized energy equation has been established. This 
equation was the source for derivation of a nominal robot velocity relation as the function of the 
initial and final positions, as well as the limited maximal nominal velocity of the robot motion. The 
nominal robot acceleration equation, as the function of the same parameters, has been derived directly 
from the mentioned artificial potential. It is shown that both nominal velocity and acceleration 
equations satisfy the condition of the repetitive motion: boundary velocities are equal to zero and 
boundary accelerations are positive on the first side and negative on the second one. The obtained 
nominal velocity and acceleration relations are very simple for calculation and can be applied to the 
real time nominal control of repetitive robot motion.  
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