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ABSTRACT 
A new method for deriving the isentropic coefficient and the adiabatic compressibility from speed of 
sound is recommended. It is based on numerical integration of differential equations connecting the 
speed of sound with other thermodynamic properties. The method requires initial values of density 
and heat capacity at a single temperature in the pressure range of interest. It is tested by deriving the 
isentropic coefficient and the adiabatic compressibility of gaseous argon in the temperature range 
250-450 K, and in the pressure range 0.2-12 MPa. Estimated absolute average deviation between 
calculated and reference values of the isentropic coefficient and the adiabatic compressibility is 
0.007% and 0.008%, respectively. 
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1. THEORY 
 
1.1. The thermodynamic speed of sound 
The thermodynamic speed of sound (i.e., the speed of sound at zero frequency) in a fluid, u, m/s, is 
defined by the Laplace's equation u2 = (∂p/∂ρ)s, where: ρ, kg/m3, is the density of the substance, p, 
N/m2, is the pressure, s, J/kg·K, is the specific entropy. Since ρ = 1/v the Laplace's equation has the 
following form, Ref. [2, p.127]: 
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Combining the above equation with important relationship, rarely mentioned in the literature, that 
determines the following derivative, Ref. [2, p.124]: 
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we obtain 
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An equivalent form of Eq. (3) can be found by replacing the derivative (∂p/∂T)v in terms of the cyclic 
equation, according to Ref. [1, p.636]: 
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so that, Eq. (3) results 
2 2
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1.2. The isentropic coefficient and the adiabatic compressibility 
The next relationship widely used in the thermodynamics to calculate the isentropic coefficient for a 
substance in various states is, Ref. [2]: 
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Since the partial derivative in the above equation is defined as, Ref. [2, p.117] 
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Eq. (6) can be rewritten in the following form 
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However, combining Eqs. (6) and (2) leads to another form of the isentropic coefficient 
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Another relationship also important in the thermodynamics, so-called the coefficient of adiabatic 
compressibility, is defined as, Ref. [2]: 
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Since the partial derivative in the above equation is defined as, Ref. [2, p.124]: 
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Eq. (10) has the following form 
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1.3. Average absolute and relative deviation 
Average absolute deviation (AAD) is calculated according to expression 
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and relative deviation (RD) according to expression 
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where: M is the number of isobars, N is the number of isotherms, X is the value of a coefficient, 
superscript cal denotes the calculated value of a coefficient, and superscript eos denotes the reference 
value of a coefficient obtained from the fundamental equation of state. 
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2. RESULTS AND CONCLUSION 
Numerical procedure is used for deriving the isentropic coefficient and the adiabatic compressibility 
of gaseous argon from its speed of sound, Ref. [3], in the temperature range 250-450 K, and in the 
pressure range 0.2-12 MPa. The temperature range is divided into 5 isotherms (e.g. 250 K, 300 K, 350 
K, 400 K, and 450 K), and the pressure range is divided into 7 isobars (e.g. 0.2 MPa, 2 MPa, 4 MPa, 6 
MPa, 8 MPa, 10 MPa, and 12 MPa). The set of equations (1) to (5) is solved numerically by combined 
Adams-Moulton, Ref. [4, p.404], and Runge-Kutta, Ref. [5, p.93], method. All pressure derivatives 
are estimated by Lagrange interpolating polynomial, Ref. [6, p.55], of sixth-degree. Figs. 1-4 give an 
impression of the results obtained. Initial values of ρ and cp, Ref. [3], are specified along isotherm at 
250 K, and therefore this isotherm is omitted. Estimated absolute average deviation of calculated 
values of the isentropic coefficient and the adiabatic compressibility, with reference to corresponding 
reference values, Ref. [3], is 0.007% and 0.008%, respectively. 
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Figure 1. Isentropic coefficient of argon vs. temperature;full line this work; symbols [3]. 
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Figure 2. Relative deviation of argon isentropic coefficient vs. pressure; symbols this work; full line [3]. 
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Figure 3. Adiabatic compressibility of argon vs. temperature;full line this work; symbols [3]. 
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Figure 4. Relative deviation of argon adiabatic compressibility vs. pressure; 
symbols this work; full line [3]. 
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