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ABSTRACT 
The propagation of a pollutant and reactions that a toxic particle undergoes, are important aspect of a 
pollutant’s fate in the environment. In this paper, we research the process of natural non-stationary 
mass transport in atmosphere. We deal with the system consisted of fluid (air – continuum) in which a 
toxic pollutant is added. The distribution of pollutants in atmosphere is described by the concentration 
field c(r, t). Diffusion, as the mixing process caused by random walk of molecules (or particles) which, 
from macroscopic point of view, hardly occupy the configuration with maximum entropy (in absence of 
outer forces - homogeneous mixture), can be appeared on molecular level or with velocity gradients 
caused by shear forces (like wind shear). The second case show greater degree of mixing, known as 
dispersion. In our case, the pollutants diffuse through the medium and the propagation of them is 
expressed by mass flux rate vector field  q(r,t). We consider also the possibility of the contaminant’s 
creation (or vanish), which is given by scalar source field s(r,t). For calculation of pollutant transport 
upon given conditions, we developed a diffusive model in integral form and finite volume method for a 
specific case of axisymmetrical diffusion. The finite volume discretisation method gives very clear 
physical interpretation and possibility of reaching very valuable reliable results. For different 
combination of location of pollutant source, wind direction and other related parameters, it is possible 
to obtain an optimum solution in terms of achieving satisfactory level of chemical pollution. 
Keywords: axisymmetrical diffusion, finite volume method, discretisation  
 
1. THEORETICAL BASE 
The subject of interest is a fluid system (medium) in which a pollutant is added. The pollutant 
distribution is represented by scalar field of concentration ),( trc r 1. The diffusion is the process of 
mixing fluid components, caused by random moving of molecules, which, by microscopic point of 
view, hardly occupy a configuration of maximal entropy (in absence of outer forces this is the state of 
homogenous mixture). In our case the molecules diffuse throughout the medium, and this spreading 
can be described by vector field of mass flux rate ( , )q r tr r 2. We took into account possibility of 
pollutant production (or disappearing) which can be described by scalar field of source ),( trs r 3. 
 
The basic equations are equations of conservation of some property and constitutive equations. In the 
simplest case the diffusion problem is based on a conservation equation – equation of continuity and a 
constitutive equation – Fick’s law of diffusion [1]. 
 

Continuity equation:   
c q s
t
∂

+∇⋅ =
∂

r
      (1.1) 

                                                 
1 Concentration (amount of substance per volume) ML-3  
2 Amount of substance which passing through unit cross section in unit of time or areal mass flux rate (ML-2T-1) 
3 Amount of substance which has been created in a volume around a space point r in unit of time (ML-3T-1) 
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Fick’s law determined that mass transfer by diffusion is proportional to the cross-sectional area and 
steepness of the concentration gradient, with respect to time:  q D c=− ∇

r
  (1.2) 

where D is diffusivity or diffusion coefficient [L2T-1]. 

Putting (1.2) in (1.1) we obtain scD
t
c

=∇⋅∇−
∂
∂ )( . Using Gauss theorem this equation takes an 

integral form:     ∫∫∫ =⋅∇−
∂
∂

VSV
dVsdSncDdVc

t
r

  (1.3) 

The finite volume method (FVM) is powerful discretisation method with very clear physical 
interpretation [2]. The continuous space and time coordinates will be transformed to a discrete form. 
The time is turning discrete by arbitrary number of time steps { },...,, 210 ttt , separated by elementary 
time interval tδ . The space is divided into finite number of control volumes (cells), which generally, 
can have different forms and volumes. In the simplest case these are cubes of same cubic volume. The 
grid nodes are taken in the center of each control volume. The boundary nodes are located in the 
centers of volume surfaces.  
 
We have chosen an axisymmetric system (like the point source of pollutant propagation in 
atmosphere) in order to reduce the dimension of the system. For this reason we transform the 
Cartesian coordinates (x,y,z) to the cylindrical ),,( zr φ , where  z-axis is oriented to the axis of 
symmetry.  Because of that, scalar fields ),( trc r

 and ),( trs r
 will not depend of angular coordinate 

φ . The discretisation of the space is made by splitting it to the families of coordinate planes as 

follow: 
}{
}{

}{

, (

( )

, 0,1,2,... 1) ( )

j

k

m

r r j l j N cylinders around the axis)

z z k l k N planes orthogonal to the axis

m m n planes through the axis

δ

δ

φ φ δ φ

= = ⋅ ∈

= = ⋅ ∈

= = ⋅ = −

 

The cells are indexed as { }),(),(),(),,( 111 +++ ××∈= kkmmjj
m
jk zzrrzrV φφφ . 

We reduced the dimension by integrating cyclic polar variable φ  and excluding it out of 
consideration. 
Turn on the equation (1.3) and take a cell  for the observed volume. The volume integral of a 

scalar function over a control volume can be expressed as:  

m
jkV

),( zrs

∫∫∫ ==
jk

m
jk

m
jk vVV

dzdrrzrsdzdrdrzrsdVzrs ),(),(),( φδφ    (1.4) 

where vjk   represents corresponding surface in r-z plane. 
In the consideration of surface integrals we calculate the term which represents the flux through the 
boundary control volume (the second term in (1.3)) by dividing the integral over the surfaces into the 
integrals over different coordinate planes. The differential dS has different shapes as: 

        (1.5) 
,

,
,

r d dz r const
d S dr dz const

r d dr z const

φ
φ

φ

=⎧
⎪= =⎨
⎪ =⎩

When we sum up the integrals over the planes constφ = , the result is zero, as their contributions can 
be canceled. In final equation we write 2π  instead δφ . So we get the ring (actually it is square 2-
dimensional cell in r-z plane) which we note as 1

0
m n m

jk mV = −
==U jkV . With this, we can write: 

( , ) 2 ( , )
jk jkV v

s r z dV s r z r dr dzπ=∫ ∫       (1.6) 
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∫ ∫ ∫

∫ ∫
   (1.7) 

 
It should be mentioned that the (r,z) metrics in 2D is not Euclidian. The points with greater r have 
“greater weight”, since in 3D actually, they represent the circles about axis, and greater r means 
greater radius of circle. The (r,z) metrics is given by expression: 

. 
2

2 2 2 2 (2 ) 0
(2 ) . .

0 1
r

ds r dr dz i e
π

π μ
⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

The differential of 2-D volume (surface) in this metrics is equal 2dv r dr dzπ= . In 3D this is the 
volume of the ring which radius is equal r and linear transversal dimensions dr and dz. 
In order to complete transfer to the 2D form, we note 2-D cells with jkv . The volume of jkv  cell is: 

2 2
1 2

12 2 ( ) (2 1)
2jk jk

j j
jk k kv v

r r
v dv rdrdz z z j 3lπ π +

+

−
= = = − = +∫ ∫ π δ    (1.8) 

If we note with jkX  the centers of cells jkv , we will have the coordinates of these centers as: 
2

( ) ( )
, ,

1 3 3 1 1 1,
2 1 2jk jk

r z
j k j kv

jk jk

j j ( )
v

X rdv l X zdv k l
jv v

δ δ+ +
= = = = +

+∫ ∫    (1.9)  

Thus, z-coordinate is located in the middle to z-direction, but r-coordinate is moved in relation to the 
Euclidian’s center in the opposite direction of axis.  
 
2. DISCRETISATION OF EQUATION  

a) A scalar field  can be transform into a discrete quantity by ( , )u r tr 1( ) ( , )
i

i V
i

u t u r t dV
V

= ∫
r

, where 

iV  is the volume of cell Vi. These discrete quantities are join to the points in the centers of the 

control volumes. In our case, scalar fields  and  are transformed into discrete mean 
values  and  averaged over control volumes, and correspond to the centers of control 

volumes 

( , , )c r z t ( , , )s r z t
( )jkc t ( )jks t

jkX . 
b) We also should express surface integrals by dicrete quantities. The expression (1.7) in cylindrical 

coordinates will have the forms:             ( ) ;r z
c c cq D q D
r r z
∂ ∂

=− + =−
∂ ∂

.  (2.1) 

rq and appear in the linear integrals on the edges of cells, so we can approximate them with mean 
values on corresponded lines. The partial derivation over z is equal the difference of mean values of c 
on two adjacent cells divided by the distance between these cells, that is: 

zq

1

1

1,( )
jk j k

j k j k

v v j k j k

c cc
z d X

+

+

∂ ∂ + X
−∂

=
∂ I

. 

By analogy we get the result for the first term in (1.7) as  
1

1

1,( )
jk j k

j k j k

v v j k j k

c cc
r d X

+

+

∂ ∂ +

−∂
=

∂ I X     (2.2) 
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c) The distance in z-direction will be lδ . But, in the r-direction it can be calculated by formula:  

 ( )
5 4 3 2

( ) 2 ( )2
1 4 3 2

72 360 684 612 256 40
16 64 88 48 9

r r
j j k jk

j j j j jr X X l
j j j j

δ π πδ+
+ + + + +

= − =
+ + + +

  (2.3)

   
 
Now we have all expressions for partial derivations, so the equation (1.7) have final form 

as:
1 1

1

1 1 1 1 1 1

( 1) ( ) ( )
2

1 ( ) ( 2
2

jk

j k jk jk j k
j j

S

j k j k j k j k j k jk j k

l lj c c j c c
r r

q ndS D l
c c c c j c c c

δ δ
δ δ

π δ
+ −

−

+ + − − + −

⎧ ⎫+ − − − +⎪ ⎪⎪ ⎪⋅ = − ⎨ ⎬
⎪ ⎪+ − − + − +⎪ ⎪⎩ ⎭

∫
r r

)
 (2.4) 

d) Discretisation of time. The time is discretised by using the Runge-Kutta method. For the sake of 
this discretisation, Equation (1.3) is devided by ( ) 31 2 1jkv j lπδ= +  which gives its term on the 

right hand side in the form:   

( ) ( ) ( )

( ) ( )

1 1 12
1

1 1 1 1 1 1

1
( 1 2)

1 2
2

jk
j k j k jk j k

j j

j k jk j k jk jk jk jk jk

c D l lj c c j c c
t r rj t

c c c c j c c c s

δ δ
δ δδ + + −

−

+ + − − + −

⎧∂ ⎪= + − − −⎨∂ + ⎪⎩
⎫+ + − − + − + +⎬
⎭

+
           (2.5) 

This represents the system of equation by indexes j and k. If we use the matrix [ ] { }( ) ( )jkC t c t= , we 

obtain the compact form of equation (2.5):         
[ ] [( ) ( ( ) )t F t
dt

∂
=

C
C ]           (2.6)  

e) The Runge-Kutta algorithm. The calculation is done in discrete point in time: nt t n tδ= =  

  1 2 1 3 2 4
1 1( ) ; ( ) ; ( ) ; ( )
2 2

n n n nt F t F t F t Fδ δ δ δ= = + = + =K C K C K K C K K C 3+K   (2.7) 

Based on this values, in the next time step one can obtain: 
1

1 2 3
1 ( 2 2
6

n n+ = + + + +C C K K K K4 )                         (2.8) 

The equations (2.5) and (2.8) are enough for the numerical solution of problem. 
 
3. AN EXAMPLE: THE POINT SOURCE OF POLLUTANT 
As the illustration of FVM application a concrete problem of diffusion: A point source of in 
atmosphere at definite height H is given was considered. We wanted to find the spreading of pollutant 
concentration ),( trc r

 for t>0. Initial condition for t=0, the pollutant concentration is equal zero in all 
points of space. The boundary conditions: the pollutants remain over the ground (z=0), actually the 
flux of pollutant through the plane z=0 is equal zero. Using the presented numerical procedure the 
standard results as could refereeing in [3] was obtained. 
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