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ABSTRACT 
Wire rope theory relies on the modeling of the wire ropes using the nonlinear equilibrium equations. 
The construction of the nonlinear equilibrium equations are given on the well known classical treatise 
on elasticity by Love in 1944. General nonlinear equilibrium equations acting on a thin wire is 
presented. The modeling difficulties are taken into account and a realistic model of a wire rope strand 
is constructed. A finite element model is presented and the numerical solution using this model is 
solved and the results are presented. Stresses and deformations are presented along a simple straight 
wire rope strand and the results shows the typical behavior of a strand under the axial loading.  
Keywords: Wire rope, wire strand, nonlinear equilibrium equation, modeling of wire rope 
strand 
 
1. INTRODUCTION 
Wire rope theory is based on a well known classical treatise on elasticity by Love in 1944. General 
nonlinear equilibrium equations are derived and presented in [1]. The mechanical behaviors of the 
wire ropes are investigated in [2] based on torsion and shed light to the bending analysis of the open-
coiled helical springs in axial plane by bending moment and lateral load. Green and Laws, in general 
theory of rods [3], mentioned to a restricted and linearized form to determine stresses in helical 
constituent wires in cables. Governing equilibrium equations are taken as a starting point in most of 
the analytical analysis. Costello et al. presented the general behavior of the wire ropes in different 
aspects in his papers and, gathered his works in [4].  
Due to its complex shapes it is still more difficult task to model and analyze wire ropes using 
numerical methods. Most of the analysis are based on the modeling arc length of a simple strand to 
see the mechanical behavior of the strands and compare the numerical solution with the experiment or 
analytical solution if exists. The aim of this study is to model not an arc length of a strand but to make 
a realistic model of a strand using by using a modeling application Solidworks® and a computer-
aided engineering tool Abaqus/CAE®.  
 
2. GENERAL THEORY OF WIRE ROPE STRANDS 
The general behavior of a strand is analyzed using the nonlinear equilibrium equations given by Love 
in [1]. The six governing differential equations are presented. Using the direction cosines and 
summing the forces ,  and TN dN+ N dN′ + ′ dT+  along the element length  respectively fords x , 
y  and axis gives [1], z

 0, 0, 0,dN dN dTN T X T N Y N N Z
ds ds ds

τ κ κ τ κ κ
′

′ ′ ′ ′− + + = − + + = − + + =  (1) 
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Similarly the couplesG dG+ ,  and G dG′ + ′ H dH+  for the moments in x , y  and  axes will 
give, 

z

 0, 0, 0dG dG dHG H N K H G N K G G
ds ds ds

τ κ κ τ κ κ
′

′ ′ ′ ′ ′ ′− + − + = − + + + = − + +Θ = , (2) 

where ,  and T  shows the forces, , GN N ′ G ′  and shows couples. The equations H (1)-(2) are the 
six differential equations which constitutes the equations of equilibrium for the thin wire loaded and 
depicted in Figure (1-a). When the cross-section of the wire rope is considered circular area within 
radius R , the changes in curvature and twist per unit length to the internal loads are given by; 

4 4 4

0 0( ); ( ); (
4 4 4(1
R R RG E G E H

v
π π πκ κ κ κ τ τ′ ′ ′= − = − = −

+ 0 )
)

E

E

 (3) 

where  are respectively represents Poisson’s ratio and Young’s Modulus while curvatures 
 and the twist per unit length 

 and v
,  κ κ′ τ  are given by; 20,  cos / rκ κ α′= =  and sin cos / rτ α α= . 

For a circular cross section the tension T  in the wire is given by 2 ,T R Eπ ξ=  where ξ  shows the 
axial wire strain. 
 
2.1 Analytical Solution Theory 
A simple straight strand with the cross section given as in Figure (1-b) will be analyzed. The helix 
angle of an outside strand 2α  can be obtained by the relation, 2 2tan / 2 2p rα π= , where 2p  is the 
pitch of an outside wire and . The initial curvature and the twist per unit length are given, 2 1r R R= + 2

 
2

2 2
2 2 2

2 2

cos sin cos0; .and
r r

2α α ακ κ τ′= = =  (4) 

The wires of the strand are deformed by the total axial force F, and the total axial twisting moment Mt. 
It will be assumed that an outside wire is not subjected to external bending moments per unit length in 
each direction, K2=K΄2=Θ2=0. Also components of the external line load per unit length of the 
centerline in y and z directions are assumed to be zero, Y2=Z2=0, and the axial wire tension T2 is 
assumed to be constant along the length of the wire. Using the equations (3) and (4), the equilibrium 
equations given before in equations (1)-(2) becomes to, 

 
2

2 2 2
2 2 2

2 2

sin cos cos( ) ( ) ( ) 0N s T s X s
r r

α α α′− + + = , 2 ( ) 0dN s
ds
′

, 2 ( ) 0dT s
ds

=  (5) =
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2 2 2 2
2 2 2

2 2

( ) sin cos cos( ) ( ) ( ) 0dG s G s H s N s
ds r r

α α α′− + − ′ = , (6) 

 2 2 2
2

2

( ) sin cos ( ) 0dG s G s
ds r

α α′
+ = , 

2
2 2

2
2

( ) cos ( ) 0dH s G s
ds r

α
− = , (7) 

where subscript 2 refers to the outside wires. The system of equations (5)-(7) are solved using 
Maple® in [5] and it has been shown that the resulting equations are harmonious with the equations 
found by Costello [4], the following results are obtained, 

 2
2 2 2

2 2

sin
cos cos

rH G 2Nα
α α

′ ′= + , (8) 
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2 2 2
2G2 2

cos sin cosN H
r r
α α α′ ′= − , 

2
2 2 2

2 2 2
sin cos cosN T

r r
α α α′= −X . (9) 

Using equation (3) with the geometrical properties defined on the cross section of the strand [5], the 
following equations can be written for 2G′ ,  and , 2H 2T

 4
2 2 24

G ERπ κ′ ′= Δ , 4
2 24(1 )

H ER
v

π
2τΔ+

2
2 2 2ERπξ=, T , (10) =
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A projection of the forces, acting on the outside wires, in the axial direction of the strand yields  
and, the total axial twisting moment is denoted by

2F

2M . Both  and 2F 2M  are given below, 

[ ] [ ]2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2sin cos , sin cos cos sin .F m T N M m H G T Er N Erα α α α α′ ′= + = + + − α′  (11) 

The axial force and the axial twisting moment on the center wire are  and 1F 1M  respectively, 

 , 2
1 1 1RF Eπξ= 4

1 1 .
4(1 ) sM ER

v
π τ=
+

2 2

 (12) 

The total axial force is  and the twisting moment is 1F F F= + 1tM M M= +  acting on the strand. 
 
3. MODELING OF A SIMPLE STRAIGHT STRAND 
A simple straight strand model is given in Figure (1-b). The model is constructed with a center wire of 
radius 1R , surrounded by six helices around with the helix angle 2α . To construct (1+6) wire rope 
strand model Solidworks and Abaqus/CAE programs are used simultaneously. Core wire is created in 
the Abaqus/CAE to get rid of the meshing problems. But it is not possible to simply create a helical 
wire using Abaqus/CAE at the moment. First of all a helical path have to be created in Solidworks. To 
do this helix and spiral curve should be used. Selecting the front plane, a circle with the radius 1 2R R+  
is created which will be the radius of the helical path. The pitch of the helix, starting angle of the helix 
and number of revolutions parameters are given as ,  and 1 respectively. When this is 
accomplished a circle will be created at the beginning of the helical path with radius

247.65mm 0o

2R . Then from 
the features, Swept Boss/Base will be selected to surround the path with this circle. As a profile the 
circle with radius 2R  and as a path the helical path should be selected. Doing this a helical wire with a 
thickness of  has been created. At the end of this work this part should be passed to the 
Abaqus/CAE with Parasolid file extension. In Abaqus/CAE the helical part can be imported as a part. 
The helical wire part and circular wire part can be assembled in Abaqus/CAE. At the end a radial 
pattern procedure with 6 numbers of instances for 360  total angle should be applied. The simple 
straight strand geometry with  wires is ready at the moment for analysis. Only the necessary 
boundary conditions, contacts and the loads have to be applied to the assembly. After that it is 
necessary to create a mesh for solving the problem. The element type and the mesh size are very 
important to solve the problem. If the mesh is coarse then problem could not converge and there will 
be no solution for this reason. C3D8R: A-8 node linear brick, reduced integration hourglass control 
type element is used for the analysis. There are 14859 numbers of nodes, 11340 numbers of elements.  

2.5654mm

o

(1 6)+

 
3.1 Numerical Example 
 
3.1.1 Analytical Solution: Consider a simple straight strand cross-section given as in Figure (1-b) 
with the parameters [4]; 1 2.6162R = mm , 2 2.5654R = mm , , 

,  and 
2 247.65p = mm

196497.52E = 2/N mm 0.25v = 2 6m = . Outside wires are assumed not touching each other 

and , . The angle of twist per unit length of the strand is 2 1 2 5.1816r R R mm= + = o
2 82.510641α =

0sτ = , which means that the strand is not allowed to rotate and 1 0.003ξ ε= = .  and 2R κ′Δ 2 2 2R τΔ  
can be computed as 2 2 0.00005564R κ′Δ = − , 2 2 0.0001838R τΔ = − . Equations (8)-(12) yields;  

1 2 12675.65 70970.48 83646.12F F F N= + = + = , 1 2 45877.83tM M M Nmm= + = . 
 
3.1.2 Numerical Solution: Encastre boundary condition is given to one side of the wire rope strand, 
while force is applied to the other side. Each of the outer wires are loaded with force 11828.6  and 
the center wire is loaded with 12677.4 . Wire material is selected as steel with the Young’s 
modulus of  and the Poissons ratio is taken as 

N
N

2196497.52 /E N= mm 0.25v = . Also the wires are 
constrained at the loaded side with another boundary condition which allows the strain and 
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displacements can occur only in the  directions. The other directions are prohibited to 
strain/displacement affects in  and  directions. The proposed model is solved and the 
deformations can be seen in Figure (2-a), von-Misses stress can be seen in Figure (2-b). It can be 
concluded that strain distribution along the strand is harmonious with the general behavior of a wire 
rope strand and also in a good agreement with the analytical solution of 0.003 strain given in the 
example above. Strains are going to be stable near to the encastre side of the strand. Also von-Misses 
stress distribution shows the good distribution along the wire rope strand. 

3 ( )u z

1( )u z 2 ( )u z

 
(a) Loads acting on a thin wire    (b) (1+6) wire straight strand model 

Figure 1.  Loads and cross-section of a wire rope strand 
 

  
 

      a. Strains and displacements        b. von-Misses stress 
Figure 2: Deformation and stress distribution on a wire rope strand 

 
4. CONCLUSION 
After discussing the general theory of a wire rope strand, analytical solution of the nonlinear 
equilibrium equation for a simple straight strand is given. Modeling of a Simple Straight Strand using 
the Solidworks and the numerical definition of the experiment problem using Abaqus/CAE is defined. 
After the wire rope strand problem is solved using Abaqus/CAE, results are presented. The results 
shows that both deformation and von-Misses stress distribution over the simple straight strand are 
harmonious with the general behavior of a wire rope strand. The result shows that the strain 
distribution is in good agreement with the analytical solution given in example. 
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