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ABSTRACT 
This paper presents a comparison of critical loads for trusses, calculated by linear and nonlinear 
stability analysis. Analyses are provided by using finite elements method. In linear case, critical load 
is extracted from derived algebraic eigenvalue problem. In case of nonlinear analysis, critical load is 
determined by construction of postbuckling equilibrium path. Numerical examples for characteristics 
trusses are given. It is shown that in the case of some perfect trusses, linear approach may produce 
significant error in the calculation of critical load, and nonlinear analysis should be introduced. The 
conclusions about conditions for using linear and nonlinear approach to critical load calculation for 
trusses are derived. 
Keywords: truss, stability, linear analysis, nonlinear analysis, critical load 
 
1. INTRODUCTION 
Stability analysis of engineering constructions requires calculation of buckling load and 
corresponding buckling shape. Stability problems are almost simplified by neglecting pre-buckling 
deformation, and considering construction with no imperfection (perfectly straight beams, etc.). This 
assumptions enables deriving eigenvalue problem, which solutions are critical (buckling) load and 
corresponding buckling shape. It is known that in case of beam stability analysis, these assumptions 
are correct and theoretical value of buckling load, if imperfections are sufficiently small, may be in 
practice closely obtained [1,2]. In case of beams, axial deformation does not change straight-line state 
of the beam, but, in case of some perfect trusses, prebuckling deformation may change distribution of 
forces in constitutive bars, and also acts as imperfection. 
Truss-like structures are widely used as load bearing structures, because of their relatively high 
stiffness related to low mass. In this paper is considered problem of calculation of critical load of truss 
structure. Both linear and nonlinear calculation is done using finite element method. Linear stability 
analysis is provided by solving linear algebraic eigenvalue problem, which derivation is also 
presented. In linear approach, prebuckling deformations are neglected. Nonlinear analysis is 
performed using linear expressions for constitutive matrices in equilibrium equation. Because of 
possible large displacements, analysis is done iteratively, checking does equilibrium of forces at every 
node is satisfied. Residual forces are used as additional nodal forces, until it reaches sufficiently small 
value. On this approach to nonlinear analysis, prebuckling deformation are taken into account. 
Results are compared for the specific two bar truss, commonly used in demonstration of numerical 
methods [5]. It is shown that in case of trusses, linear approach may lead to large overestimation of 
critical load, and that control of results using nonlinear analysis should be done. 
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2. GOVERNING EQUATION 
A trusses are structures consisted of pinned straight members (bars), which may only resist axial force 
(Fig. 1-a, b). One, arbitrary oriented bar is shown in the Fig. 1-c. In the foregoing analysis, bar is 
modeled by one finite element with two nodes (bar finite element), which have displacement, u and w, 
along axes of global coordinate system xy, or displacements u' and w' in local coordinate system x'y'. 
Displacements u' and w' of arbitrary point on the element ei of length l, could be expressed as 
 

 ; , (1) ie'' [ ]{ }u = N d ie'' [ ]{ }w = G d
 

where shape matrices [N] and [G], and displacement vector are given by ie'{ }d
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Figure 1. Plane two-bar truss in global coordinate system a), b); bar in local coordinate system (c). 

 
2.1. Linear Stability Analysis 
Axial deformation of the single bar in local coordinate system is considered as 
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Using (3), energy of deformation of the complete truss could be written in the following form 
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where n is total number of bars and A is bar cross sectional area.  
Transformation of displacements from local to global coordinate system is done using equations 
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where c = cosθ k and s = sinθ k. 
Using transformations defined by (5), expression for potential energy of the truss may be written in 
sense of displacements in global coordinate system as  
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where [k]ei is bar stiffness matrix, [kσ]ei is stress stiffening matrix given by [4] 
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Deriving equation (6) in sense of displacements, equilibrium equation could be written in the form  
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where is bar axial force, produced by applied external load. ieS
Considering that bar force linearly depends on applied external load P, each bar force could be then 
written as 
 

 ie
0S Sλ= , (9) 

 

where  is bar force caused by unit external force, and λ is load multiplier. ie
0S

Using (9), equation (8) may be written in the form of algebraic eigenvalue problem 
 

 [ ]{ } [ ]{ } 0σλ+K D K D = , (10) 
 

where [K]and [Kσ] are global stiffness and stress-stiffening matrices, and {D} is global displacement 
vector. Solution of eigenvalue problem (10) are load multiplier λ and corresponding buckling shape. 
 
2.2. Nonlinear Stability Analysis 
Considering bar deformation expressed by the linear term of equation (1), equilibrium equation of 
loaded truss has the known linear form 
 

 [ ]{ } { }=K D F , (11) 
 

where {F} is vector of applied external load (contains one non-zero coefficient in case of trusses in 
Fig. 1). 
If applied load produce large displacement, exact displacements will be different from solution of 
(11). Coordinates of i-th node after deformation are  
 

 0 0;i i ix i i iyx x D y y D= + = + , (12) 
 

where x0i and y0i are coordinates of i-th node in undeformed state, and Dix and Diy are its 
displacements calculated from (11). 
Real value of axial force in k-th bar, which lies between i-th and j-th node, is then 
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Bar force is, in case of large displacement, different from result of linear analysis. At every node is 
then calculated components of resultant force ΔFix and ΔFix in directions of x and y axes. Resultant 
forces in i-th node are 
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where Fix and Fiy are components of external load at i-th node, and nbar are number of bars connected 
in node i. 
An improved result is obtained by solving equation (11), where matrix [K] is calculated for 
configuration defined by current solutions {D}, and load vector {F} contains resultant forces, 
calculated using (14). Calculation is finished when nodes are in equilibrium, i.e. resultant forces 
become sufficiently small. 

 
Figure 2. External and internal forces acting on one node. 
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3. RESULTS DISCUSSION 
Results of linear and non-linear calculation of critical load, for characteristic two-bar trusses from Fig. 
1, are given in the Fig. 3. Nonlinear calculation of critical load is done by tracking deformation of the 
system, while applied load increases. Critical load is load at point on the equilibrium path where 
tangent becomes vertical. Presented procedure of nonlinear analysis may be applied until stable 
deformed configuration exists. 
Results for truss from Fig. 1-a are calculated for L = H = 1 m. Truss has unstable symmetric post-
critical path [5], and after load P reach critical value no stable deformed shape exists. In case of bars 
of equal cross-sectional area, calculated critical loads differ more then two times. Critical load 
calculated by both approaches becomes closed only in case if vertical bar is rigid.  
Results for truss from Fig. 1-b are calculated for L = H/3 = 1 m. In this case, results of linear and 
nonlinear analysis become coincident only in case of bars of equal cross-sectional area. Difference 
increases with ratio of cross-sectional areas of bars, and converges to 27% if one bar is rigid. 
 

 
 (a) (b) 

Figure 3. Comparison of postcritical paths. 
 
4. CONCLUSIONS 
Presented stability analysis of characteristic trusses shows possibility of large difference of results 
obtained by linear and non-linear approaches. Error of linear analysis is caused by assumption of 
force distribution, which neglect deformation of the truss. Results of linear stability analysis are 
acceptably accurate only if specific geometry (symmetric trusses) or existence of very rigid bars 
(unsymmetrical trusses) in trusses disables large prebuckling deformations, until critical load 
predicted by linear analysis is reached. 

Analysis shows necessity of usage of non-linear approach to truss stability analysis. For this 
approach, in this paper is presented efficient and simple method, based on iterative application of 
linear equilibrium equation. 
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