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ABSTRACT

In this paper we consider semilinear elliptic Dirichlet’s boundary value problem with small
parameter, well known as singularly perturbed semilinear reaction-diffusion problem. Using theory of
projection-mesh methods, precisely using the Galerkin method with natural choice of test function, the
given boundary problem is discretized and we get a discrete analog non-linear system. Solving the
non-linear difference scheme, we come to the approximate solution of the problem.
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1. INTRODUCTION
In rectangular domain Q= {(x,y)e R :0<x<l, 0<y<l, },

consider semilinear elliptic equation
eAulxy)=F(oyu)  (se(0]) (1)
where F (x, y;u) is sufficiently regular function, which has strictly positive partial derivative with

respect to u,
oF ;
F“=M2m>0 (m = const.) . )
ou
Propouse Dirichlet's boundary condition : u (x, y) |G =0, (G bound area (2).

3)
We call problem (1) — (3) semilinear elliptic Dirichlet's boundary problem. Estimate solution of this
problem is given in [3] Notice that analog one-dimensional problem is considered in [2] and will
be basic start point for discretization of problem (1) — (3). The aim of mentioned discretization is

getting difference sheme which will, uniformly converge to exact solution of problem (1)—(3) (in

points of our mesh), with respect to perturbed parameter &.

2. DISCRETIZATION OF THE PROBLEM
Define mesh @, =®, x®,’, onset Q , where

E] :{ X; : i:O’l""’Nl;xo :O’XM :Zl }:
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@ ={y,:j=0L.,N,;y,=0y, =1 }.
Let G =, NGand @, =@, NQ. Thus, @ =, UG,, where sets in last union are disjoint.
Let w (r,w)=f (t,w)—yw ( = const.>0 ). Now, we can consider next boundary problem
Lw=&'w'(t)=y w(t)=y (,w) on (01)
w(0)=0 ; w()=0, (4)
on given mesh
{t,:i=0,1,...,N;t,=0;t, =1} .

Using results from [2] , we have

(Tw )[ = a[ WH - ci W[ + am Wi+1 = 872 |:]. urljl (S)lr// (S7 W)dS + T ui[ (S) l//(S, W)dS:| >

i=1,2,,.,N-1; w,=w,=0, Q)
where
wewl) s e B o B B,
sinh(BA ¢ ) tanh(SA ¢,) tanh(BA 1) &

If we approximate right side in (5), by replacing function (//(t,w(t)) on [t‘.,tm] with its value

in point ¢,, we get next difference sheme

i=1,2,., N=1 : w,=w, =0 . (6)

On the line y =y, ( j=01..,N, -1 ), equation (5) becomes

(T;(l))f,j = a[(l) ui—l,/ - ci(l) ui,/ + a[(l) um,/ = ‘972 I uilif'r)(s)l//ﬁl)(s)ds + IJU u[I(XJ(S)W/(I)(S) ds ’
tiy 1

i=1,2,,N,~1; u,, =u, =0, 7

where

ouls,y,)
a)/z

are solutions of boundary problems

l//j('l)(s)zF (S’y/ ;u(s,y/))—ylu(s,yj)—gz

b

u, = u(xl,yj) ; y,=const.>0, and u'" , u""
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gzw—%ul’(x,y/):o 5 u,'[('r)(x,)zl 5 u,”(X)(xm):O’
ox
Lou'ley)

) en)=0 5w s)=05u e, )=
: |

Similarly, on the line x =x, (i =0,L..., N, —1), equation (5) becomes

Vi

(1), =au, =, v, = | [l ()ds+ | u;w(s)wfﬂ(s)ds} ,

Yij-1

Jj=L2,.,N,-1; u, =u, =0, ®)

iN,

, 0%u(xs)
ox’

9

where  y/(s)=F(x,s3u(x,5) -y, ulx,s)-¢

y, =const.>0, and u!"" , u"" are solutions of boundary problem

¢ éy—;_yzlu;(xz’y ):0 > u;(-")(y/)zl;u/’_()’)(y/_”)zo,
2 azul'l xi’y ) 1 n(y 1(j
¢ ]—2_721’[/ (xi’y ):0 ; u,/’(v‘)(yj):o;uj (J)(y,fﬂ):l'

Obviously, we can represent functions z//f”(s) and y?(s) as

v () =y )+ v ) -y x) J=v )+ | ay,

v =y )+ v @ -w o) J=w o)+ [ .

Y

Now, equations (7) and (8) can be write as

]—;lmu — F(x,y;u)—ez Z_l:_'_ Yo (X,y;l//“)), (93)
Y
@ 20U o ®
T, u=F(x,yu)—¢ F+Y (x,y; ™), (9b)
X

for (x,y)ew, , where

YO ==Ll [t o] avds+ [ onf av s ],

Xi-1

i

vl | uf’ﬁ”(s)(j dy)ds + j ul (s)(j dy*)ds ]
Operators 7" and 7" are defined analogusly as in (6). If now, for (x,y)e€ ®,, by adding
equations (9a) and (9b), we get

TV +T2 =F(x,y;u)+Y"+Y? 5 (x,y)ewm,; ul,=0. (10)
Notice that, in above equation we used the fact that function wu(x,y) satisfys equation (1). With

u (x,y) we denote approximate value of function u(x,y), for (x,y) € o, .
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By ignoring of sum Y +Y® in equation (10), we get next difference sheme
Lu=T"u+T"u=F(x,y;ut) ; (x,y)€m,; ul,=0,

or diferently written

— _ N [ O Yers — (e = ] Y [ @ — @ (7 ]_
Lhu"«j:F a. qu,_/_ui,j)_ai (ui,_/_ui—l,j) + F a/+1 u,‘,_,n _u,',_,)_a_,' (u,-,‘,- _u,',_,;l) -

i J

= F(x,y;0,,), (i=12,.,N,~1;j=12,.,N,~1),
i, =i, =0 (j=0Ll.,N,), @&,=&, =0 (i=0l.,N,).

0,

Example
Apply this method on solving of Dirichlet's boundary problem
0,0l Au(x,y)=x"—-y*, on D=[-1,1] x [-1,1],
u(x,y)|,=0 ( G —bound of area D ) .

Fyesenje Dinchlel-ovog rubnog problems

y-08a

Figure 1. Approximate solution of problem (13)
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