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ABSTRACT 
This paper deals with process limits in rifling performed by cold extrusion with rifled conical tool. The 
method of characteristics and sliding lines, and experimental method were used. Influence parameters 
were varied: sample geometry, tool geometry and limit deformation rate. This research lead to 
process limits when longitudinal cracks start to appear. 
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1. STRESS ESTIMATION WITH CONTACT CONDITIONS 

r - inner radius of sample 
R - external radius of sample 
ra – tool radius  
α - half of the central angle of rifled part of the tool 
γ0 - half of the central angle of tool rifle  
Fd - deformation force 
Fp – extrusion force  

Figure 1. Scheme of rifling process by cold extrusion with rifled conical  tool. 
 

R. Hill's methodology [1] analyses this process by theory of characteristics and sliding lines through 
double centred fan field of sliding lines. Under ideal contact conditions, without friction forces (fig. 
2a) and with friction forces (fig. 2b), occur at extrusion depth of rra − . At the conical tool surface 
(figs. 2a and 2b), with half of the central angle α , the field of sliding  lines is limited by triangle ABC 
and determined with two families of orthogonal straight lines. Having in mind that tool and sample 
surfaces are assumed to be smooth, there are no tangential contact stresses (τ α = 0 ), and sliding lines 
cross the tool contour under 45° angle (contour condition). Real rifling process occurs under condition 
of contact between the working piece and the tool (fig. 2b), which leads to occurrence of tangential 
stresses which influence contour conditions. Inside the triangle ABC, balanced pressure acts between 
the tool and the sample,  p (p' - normal pressure under contact friction conditions). At the AC and BC 
sides of the triangle, two centred fields ADC and BCE appear, which consist out of two families of 
orthogonal sliding lines. The first sliding is formed by lines from points A and B, and another family 
consists of concentric circles with centres in points A and B. 
The angles DAC = γ and CBE = δ are determined from conditions when limit lines ADO and BEO, 
who distinct plastic from rigid zone, cross the free surface in point O under angle of 45°. According to 
sliding line properties, the relation between these angles and the half of the central tool angle α is 
obtained. According to Hencky's plasticity integrals, we can assume that: 
Direction O D C→ → : σ σ ω ω ω σ γ αC s C D sk k= + + − = + +0 0 02 2 2 2( ) ( ) . ... (1) 
where: k MPas ( )  - reduced value of specific deformation resistance. 
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Direction O E C→ → :σ σ ω ω ω σ δ αC s E C sk k= + − − = + −0 0 02 2 2 2( ) ( ) . ... (2) 
Reducing equations (1) and (2) we obtain the relation between angles: 

α δ γ= − . ... (3) 
If around some point N (x,z) at the sliding line ADO arc element with length ds is spotted (fig. 2a), 
then its projections are: 

dx ds= cosω    and    dx ds= sinω . ... (a) 
The distances between endpoints of sliding lines AO measured at the abscissa x and ordinate z are: 

ds dx s i ds dx l
A S A l

cos sinω ω= = = =∫ ∫ ∫ ∫
0 0 0 0

. ... (b) 

where: s=(D-d)/2, l -  distance between points A and O measured on the axis z.  

   
a) b) c) 

Figure 2. Field of sliding lines a) under ideal contact conditions (by R. Hill), b) under contact 
friction and c) with limit reduction ratio. 

 
The force from tool is transferred to the sample within the deformation zone, and there are no forces 
on the sliding line O-A, in the direction of tool motion. As seen in fig. 2a, this condition can 
mathematically expressed through the following equation [3]: 

F k dsz s

A

= − =∫ ( cos sin )σ ω ω 0
0

. ... (4) 

σ ω ωcos sinds k ds k ls

A

s

A

= =∫ ∫
0 0

. ... (4a) 

This leads to the conclusion: the sliding line OA, which divides the plastic and the rigid zone, is not 
chosen arbitrarily, but it has to obey the condition (4) or (4a). Using Hencky's equations for the point 
N (x,z) and the point O at the sliding line OA: σ ω σ ω+ = +2 20 0k ks s , the stress in the point N is:  

σ σ ω ω= + −0 02ks ( ) . ... (c) 

From (c) and (4): [ ( )]cosσ ω ω ω0 0
0

2+ − =∫ k ds k ls s

A

, σ ω ω ω0 0
0

2 2s k s k ds k ls s s

A

+ − =∫ cos  

The stress in point O: 

σ ω ω γ α π
C s

A

k
s

l ds= + + + −∫2 1
2

2
40

[ ( cos ) ( )] . ... (5) 

If normal distribution of normal stress p is assumed, over the whole contact surface (figs. 2a and 2b), 
for the angle θ = 0  the system of equations (1.71 - [2]) gives the major stresses of the process: 

03,1 === xzzx and τσσσσ , and according to the equation (6.1) [2], ω = 450 . Thus we are 
transferred to the system of major axes, and equations (6.5) [2] lead to: 

σ σ σ σ τ1 3 0= + = − =c s C s xzk k; ; . ... (d) 
From (d), the normal pressure between the tool and the sample is: 

p kc s= − = − +σ σ1 ( ) . ... (7) 

p k
s

l dss

A

= − + + + − +∫2 1
2

2
4

1
20

[ ( cos ) ( )]ω ω γ α π
. ... (8) 
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The starting thickness of the sample s=(D-d)/2) and the half of the central extrusion angle α are given 
by the process. According to the process geometry  the length l and the angle γ are determined, while 
the angle δ is calculated by equation (3). The value of the integral in the equation (8) between limits 
from O to point A can be calculated numerically. For lower precision of results, approximate graphical 
methods can be used to solve this integral. R. Hill [1] used F. W. Bessel's functions to determine 
numerical values of coordinates of crossed points of sliding lines α and β. To find the stress values for 
points O and C, the Mohr's stress circles are drawn, according to equations of plastic flow (3.42a) [2], 
( )σ σ1 3 2− = ks  by hypothesis of largest deformation energy spent on shape transformation, for 
planar deformation state, which can be written as follows: 

σ σmax min− = 2ks . ... (e) 
According to the equation (1) and for σ σ σ σ ω ω γ αc a b ab c= = = = +; 0 0 2  and for process 
condition, where σ σa b<  we obtain: 

σ σ ωa b s abk− = −2 . ... (f) 
At external surface in point B there are no stresses in z direction, i.e.: 

xz and σσσσ === minmax 0 . ... (g) 
The component stress and the medium normal stress are derived from conditions of plastic flow 
equation (e): 

;2 sx k−=σ ;0=zσ ;0=xzτ sb k−=σ . ... (9) 
From figure 2a, the angle of sliding line a b−  is: 

ω ωab oc= . ... (10) 
This value is seen from double fan field of sliding lines. At the contact surface in point C according to 
equations (g), from conditions of plastic flow in point C (σ σ σ σαmax min;= = z ), we obtain 
component stresses and medium normal stress in point C: 

σ ω γ α
σ ω γ α
τ
σ ω γ α

x s ab s

z s ab s

xz

a s ab s

k k
k k

k k

= − = − +
= − + = − + +
=
= − + = − + +

⎫

⎬
⎪⎪

⎭
⎪
⎪

2 2 2
2 1 2 1 2

0
1 2 1 4 2

( )
( ) ( )

( ) ( )

. ... (11) 

The value of angle γ is derived from the relation between tool geometry and the working piece 
geometry: r, ra , α  and R, from double centred fan field of sliding lines, with frictionless conditions. 
The stress at the contact surface is derived by replacing (10) in the second equation of the system (11). 

σ σ ω γ αn z s ab sk k= = − + = − + +2 1 2 1 2( ) ( ) . ... (12) 
The magnitude of working pressure depends on normal stress (11) and the tool shape. The normal 
pressure of rifled tool onto contact surface with the sample can be derived from (d). 

p kc s n= − = − + =σ σ σ1 ( ) ; p ks= + +2 1 2( )γ α . ... (13) 
The tangential stresses and angles of crossing between sliding lines and the tool contour can be 
derived from figure 2b, under the contact friction conditions (forμ α - friction factor at the contact 
surface) and from the third equation in system (6.5) [1]: 

τ ωxz sk= cos2  or cos2ω
τ

= xz

sk
. ... (h) 

μ μ τ μ ω ϕα α= = =; ';xz p 1  . ... (i) 
From (h) and (i) the angle between the sliding lines and the tool contourϕ 1  can be derived: 

cos
'

2 1ϕ
μα=

p
ks

. ... (14) 

The conditional relation between the most important angles of sliding line fields, can be obtained 
according to the second condition of sliding line properties. Therefore: 

ϕ ω ω ϕ ω ω0 0D D EC E C t= − = = − = cos . . ... (j) 
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The relation between angles and the sliding line field with friction is given as: 

δ γ α π ϕ− = + −
4 1 . ... (15) 

Having in mind affirmative contact conditions in rifling (under assumption of good working surfaces 
of the tool and with good lubrication, we can achieve μ < 0 1, ), R. Hill [10] determined that normal 
pressure onto contact surfaces with friction p' only slightly depends on friction, and we can assume 
that p p'≈ , where p is normal tool pressure. Approximate extrusion pressure of tool in friction rifling: 

σ σ μ ααz z ctg' ( )= +1 . ... (16) 
where σ z  is the stress of friction rifling, calculated by equation (11). 
For boundary deformation rate across the wall thickness, the sliding line field is shown in figure 2c. 
The angle of the part of centred fan sliding line field from the point A equals γ = 0 , and having in 
mind (3) we obtain: α δ γ= − ; δα = . By using the same conditions as in equation for normal 
pressure given in (13), we reach the equation for normal pressure for boundary deformation rate across 
the wall thickness as: 

p ks= +2 1( )α . ... (17) 
Minimum ratio between external and internal radius of the sample where rifling can be performed 
without longitudinal cracks, is given in (18). 

ACBCBE == ;  )(2
45sin 0 a

a rR
rR

−=
−

;  αsinABrra =− ; αα sin)(2sin
45sin 0 arRBC

−= ;  

αsin2=
−
−

a

a

rR
rr

;       
α

α

sin2

1)sin21( −+⋅
= r

r

r
R

a

. ... (18) 

 
2. MAXIMUM DEFORMATION RATE 
Figures 3a and 3b show the diagrams of relation between R/r and ra/r and the angle α as lower limit of 
the process where longitudinal cracks occur in sample. Experiment was used to determine the lower 
limit of the process and the above mentioned relation. If we are under the lower limit, the longitudinal 
cracks occur in sample. 

  
a) b) 

Figure 3.The relation between the limit value R/r of ra/r and α. 
 

3. CONCLUSION 
Through application of Method of characteristics and sliding lines in rifling made by conical tool 
extrusion, the mathematical model was determined in function of: sample geometry, tool geometry 
and limit deformation rate, when longitudinal cracks occur. The experimental testing of samples made 
of: AlCu5, C10E and 48CrMo4, the theoretical hypothesis was confirmed. 
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