
 293

13th International Research/Expert Conference
”Trends in the Development of Machinery and Associated Technology”

TMT 2009, Hammamet, Tunisia, 16-21 October 2009

NOVEL METHODS FOR FINDING (GENERALIZED) JOINABLE
SCHEDULES

Elemér K. Nagy
István Loványi PhD

Budapest University of Technology and Economics
Magyar tudósok körútja 2., 1117 Budapest,

Hungary

ABSTRACT
This paper is about novel methods for finding Joinable Schedules (JS) as defined by J. Somló and
extended by E. K. Nagy. After a short introduction to JSs and their merits,generalization of JSs are
introduced. This article deals with methods aimed to improve the efficiency of finding JSs. After
introducing the methods and the underlying principles, the methods are analyzed and their results on
the generated example set is visualized.
Keywords: Joinable Schedules, Joinable Schedule Approach, Efficiency, Scheduling, SISONEK

1. INTRODUCTION
Flexible manufacturing systems (FMS) can be analyzed as job-shop scheduling problems (JSP). One
approach to solve these problems is the joinable schedule approach (JSA), which, if a joinable
schedule (JS) is found, can be evaluated in real-time to provide a solution with a known total
processing time. Although this solution might not be optimal, the bottleneck machine's load/idle ratio
is known and thus the goodness of the solution can be calculated in real-time.

2. JOINABLE SCHEDULES
Joinable schedules (JS) are defined and evaluated in [1], analyzed and extended in [2] and are only
briefly introduced here. The JSA is a special case of lot streaming (LS) schedules for JSPs, and
although the basic principle of LS is known for decades, practical considerations and the increasing
complexity restricts the spread of LS. According to [1], "Many researchers studied ... Lot Streaming
... focus on the Flow Shop System (FSS) ..." - like [3]. Joinable schedules have the following criteria:
- The bottleneck machine is loaded without idle times (and processing starts immediately)
- The Gantt chart is not overlapping with itself (as evaluated later)
The usefulness of the JSA is limited by two factors: A) there are problems with no Joinable Schedule
Solution (JSS), and B) finding a JS for a given problem is hard (NP or maybe even NP-hard) -
although this is true to static schedulings, according to [4]: "static scheduling problems are usually NP
hard." Figure 1a and Figure 1b demonstrates the basic idea of the JSA, without considering the set-up
times of the tasks.

Figure 1a. A Joinable Schedule

 294

Figure 1b. A Joinable Schedule joined W=3 times

With zero set-up times, W=infinity is the optimal solution, which is impossible in practice. A variable
named SoSUT (Sum of Set-Up Times on the bottleneck machine) is used to calculate the proper W for
the given SoSUT and load times - details are available in [1] and [2].

3. THE NON-OVERLAPPING CRITERIA AND THE JOINABILITY TEST
As shown in [2], there are JSs that do not pass the joinability test defined in [1]. In this article, three
non-trivial joinable schedules are shortly and graphically introduced - details are in [2].

Figure 2a. a Curiously Joinable Schedule and the visual proof of joinability

Figure 2b. a Pipelineable Joinable Schedule with a visual proof of joinability

Figure 2c. a Virtually Joinable Schedule with a virtual task V and a JS for a similar problem

4. EFFICIENCY OF FINDING JOINABLE SCHEDULES
No matter how great is a scheduling algorithm in theory, there is always a practical question in the
background: What is the maximum problem size that can be efficiently solved with the method? To
have some kind of unit, a simple benchmarking program was written that deterministically generates a
predefined number of problems, runs the predefined solver against all of them and then sums up the
results. The solver used is the JS generation algorithm described in [2]. There were two runs, both on
the same software (Debian Etch, OpenJDK 64-Bit 1.6.0_0-b11) and hardware platform (Sun X4200
with two Opteron 2220 CPUs and 8 GB RAM,). In the first run, all three JSVT tests (as described in
[2]) were disabled. In the second run, all three JSVT tests were allowed. From the viewpoint of
efficiency, the most important number is the number of timeouts - the number of times when the
solver was not able to find a JS for the given problem and was unable to prove that the problem has no
(trivial) JS solution. Clearly, the more timeouts happen, the less effective the algorithm is. Of course,
with the same time limit, a faster algorithm might find better solutions as it is able to check more
possible sequences. Yet, unnecessary tests (those that consume CPU or RAM but does not invalidate
possible solutions) increase the time needed to check a sequence, therefore making the algorithm less

 295

effective. Of course, these results do not provide a statistical analysis, they are just an indication of
performance, as the lengths of the processing times were generated by a uniform distribution and
many factors define the solvability of the generated cases.

4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Answer dist ribut ion, 4 part s

TO
MB+ ERR
PIPE+ NF
PN+ VIR
YES+ GO

Number of Mach ines
4 6 8 10 12

0

10

20

30

40

50

60

70

80

90

100

Answer dist ribut ion, 8 part s

TO
MB+ ERR
PIPE+ NF
PN+ VIR
YES+ GO

Number of Machines
4 6 8 10 12

0

10

20

30

40

50

60

70

80

90

100

Answer dist ribut ion, 12 parts

TO
MB+ ERR
PIPE+ NF
PN+ VIR
YES+ GO

Number of Machines
Figure 3a. Results with all JSVT tests turned off

4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Answer dist ribut ion, 4 part s

TO
MB+ ERR
PIPE+ NF
PN+ VIR
YES+ GO

Number of Mach ines
4 6 8 10 12

0

10

20

30

40

50

60

70

80

90

100

Answer dist ribut ion, 8 part s

TO
MB+ ERR
PIPE+ NF
PN+ VIR
YES+ GO

Number o f Machines
4 6 8 10 12

0

10

20

30

40

50

60

70

80

90

100

Answer dist ribut ion, 12 part s

TO
MB+ ERR
PIPE+ NF
PN+ VIR
YES+ GO

Number of Mach ines
Figure 3b. Results with all JSVT tests turned on

5. ANALYSIS
There are many things we can deduce from the numbers if we decipher the legend, as described in [2].
First, the number of usable answers increased in the 12-part cases from 24 to 47 percent - so we can
solve twice as many "large" problems. In the case of 8 parts, the average number of "JS found or
Global Optimum found" increased from 16 to 22 percent. In the case of 4 parts, an average of 20
percent of cases were transformed from "not found or PJS" to "proved not or Virtual". The average
time needed for the runs for 8 parts and 8 machines (supporting data not included) was reduced from
12.2 seconds to 7.46 seconds.

6. CONCLUSION
In the opinion of the author, the JSVT test are very practical and increase the performance of JS
generation considerably, thus increasing the number and quality of JSs without major drawbacks.

7. REPRODUCTION OF THE DATA
To reproduce the data sets, download sisonek-0.0.3.21_docsless.jar from http://scpfw.sf.net/ and run
the Benchmarker class with the argument "100 --no-jsvt1 --no-jsvt2 --no-jsvt3", and then with the
arguments "100". The results depend on the hardware and software environment.

8. REFERENCES
[1] Kodeekha, E.; Somlo, J., Optimal Lot Streaming for FMS Scheduling of Flow-Shop Systems, International

Conference on Intelligent Engineering Systems, 2008. INES 2008., 25-29 Feb. 2008, p. 53-58, DOI:
10.1109/INES.2008.4481269

[2] Elemér K. Nagy, Novel methods to neutralize loops and equal-effect action sequences in
resource-action-constraint models used in scheduling, PhD thesis, 2009

[3] Subhash C. Sarin, Puneet Jaiprakash, Flow Shop Lot Streaming, Springer, 2007
[4] Jean-Marie Proth, Scheduling: New trends in industrial environment, Annual reviews in control, vol. 31

(2007), pp. 157-166

 296

