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ABSTRACT 
Sonicity is the science of transmitting mechanical energy through vibrations. Starting from the theory 
of the musical accords, Gogu Constantinescu found the laws for transmitting the mechanical power to 
the distance through oscillations that propagate in continuous environments (liquid or solid) due to 
their elasticity. 
In this paper we are present some aspect about the transmission the sonic flow in the infinity long line 
transmission, some aspect theoretical and some examples of this effect. 
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1. THEORETICAL ASPECTS OF THE SONIC FLOW  
Considering the general equation of the flow and the pressure of the pipe with variable section: 
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In which the impedance Ls and the sonic capacity Cs, given by the relations: 
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Replacing in (2), the relation (3), knowing that 
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Analogue we can write Cp = k1 Cs, where 
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And for l = 1, from the relation (2) we obtain: 
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k and k1 represents constants of which value depend, first of viscosity, and the second one of the 
histerezis or the plasticity of the fluid. 
The viscosity of any particular form of the material can be defined through the coefficient Cf or k, so 

the lost energy through the internal forces ell be under the form: 
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the lost of kinetic energy. 
Perditance [3] can be defined through the coefficient Cp  or k1, with the lost of proper energy: 
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The numerical coefficients k and k1 represent proportions of kinetics and potential energy, which will 
transform into heat or in another form of energy, disappearing from the considered flow. The same 
two coefficients together with the mass and the elasticity coefficient define the type of material. 
A material is perfectly elastic when Cp and k1 zero and perfect fluid when Cf   and k are zero.  
For normal materials none of the following constants are zero Ls, Cs, Cf şi Cp. The big variety of 
properties of different materials is due to different values of this constant.  
From the pervious relations we observe that the values of the constants depend of the values of the 
pressure ps and the flow Qs. 
Friction, represented through the friction coefficient Cf  will contain any delayed force in faze with the 
flow, because of the movement of the corpus. 
Perdition represented through the perdition coefficient Cp, will include all the loss of movement in 
faze with the pressure, because of it. 
Following we study the general case of practical energy transmission through longitudinal waves in 
which the energy will be the one that will cross a column of variable section. 
By the multiplication of the relations (4) and (5) we have: 

   ]kkjkk1[
Eg

)kj1()kj1(
Eg

LC 1
2

11
ss ω

+
−

ω
⋅

−
⋅
γ

=
ω

⋅−
ω
⋅−

⋅
γ

=⋅     (6) 

From the relation (6) we observe that the multiplication of sC and sL is independent of the area of the 
transmission line section. 

For high frequencies the term from developing the series, 2
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If the frequency is high the upper expression can be simplified taking the following form: 
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For simplification we consider a conical pipe, the section S can be expressed by the relation: S = qx2, 
where „x” is the distance of the section from the peak of the cone  and „q” is a numerical constant. 
Starting from the relation: 
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General equation (7) becomes: 
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The results will be the same if we consider an elementary knot or a „vibrating radius”, formed by 
every conical pipe, having a very small conic angle that we want to consider, and for studying the 
phenomenon of every conical pipe, we don’t have any option but to add the obtained results from the 
consideration of every radius that form the cone. 
Considering such a radius in which α = μ1 x. Replacing in the relation (1) we obtain: 
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Relation (11) can be written under the following form: 
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So we can write: 
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similar with the relation (14) we can write: 
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Replacing the relation (16) in (15) result: 
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If we take the friction and the histerrezis equal with zero, we can replace Qs ψ,p, s  in this formulas by 
Qs, ps and ψ. If this is not necessary, every quantity of α, β and ψ are complex and for simplification it 
is necessary to separate the terms containing j in order to get to more explicit formulas.  
From the relations mentioned above we observe that α has a form: α = μ1 x and using the relation (12): 
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For simplifying the demonstration we consider the particular case in which the receptor and the 
generator are at a considerable distance from the cones peak, so that the terms that contain α and β 
are retained multiplying the features. 
 
In this case the relations are simplified: 
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By replacing the relations (19) in the relation (18), we will have: 
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As well we can replace (ψβ) with ψ, the term containing (ψβ) can be neglected. 
Representing the number of wavelengths between the receiver and the generator with m and the 
frequency with f, we have in the case psβ and Qsβ are in phases [3]: 
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where 
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The relation (20) help calculated the sonic flow and sonic pressure in the pipe with the upper 
frequency. 
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