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ABSTRACT 
In this paper is analyzed and modeled the non-stationary diffusion of water vapor through the flat 
wall. Balance equation of moisture respectively the water vapor flux between the two sections, for the 
given layer, is specified by the Laplace's transformation. Fluxes of water vapor (interior and exterior 
fluxes) are expressed on both sides of the wall surface with thermotechnics relevant features, 
according to the partial pressure, to concentration of water vapor and in order to absolute humidity. 
In analytical and graphical way is represented the changing of non-stationary flux of water vapor in 
the function of external temperature, wall thickness, relative resistance factor of water vapor and of 
outside relative humidity air. 
Keywords: diffusion, flux, water vapor, wall, humidity. 
 
 
1. NONSTATIONARY DIFFUSION OF WATER VAPOR THROUGH THE FLAT WALL  
Partial pressure of water vapor pw, by the nonstationary diffusion of moisture through the wall changes 
in function of time τ and distance x from the wall surface, respectively: pw = pw (τ,x). This applies 
only if the surface of the wall has not gradient of partial pressure and if the wall is built from 
homogeneous material. Otherwise, partial pressure of water vapor to the wall depends of the 
coordinates y and z. In fig. 1 is presented onedimensional nonstationary diffusion of water vapor 
respectively the specific flux of water vapor through the flat wall. Within the wall layer is separated a 
layer with thickness dx [1]. 
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 Figure 1. Nonstationary diffusion of water vapor through the flat wall  
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Equation of moisture equilibrium (the change of water vapor flux between two sections) for the given 
layer (as in fig. 1), is: 
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Where: pw, Pa - partial pressure of water vapor through the layer of the wall, cL, kg/m3  and cW, kg/m3 -  
concentrations of dry air and moisture;  μ, kg/(msPa) – permeability coefficient of water vapor in the 
wall; and D, m2/s - diffusion coefficient of water vapor through the wall. 
 
Since, μ, D dhe cL do not change with the time then from equation (1) appears [2]: 
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For the examined elementary layer of the wall we have: 
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Partial differential equations (2) and (3) represent mathematical models of nonstationary diffusion 
water vapor through the wall, respectively, determine the specific flux of water vapor gw through the 
wall, in function of time τ and distance x from the surface of the wall. 
To reckon the solutions of  gw(τ,x) and pw(τ,x,) respectively cw(τ,x,) and ωw(τ,x,), first we use the 
Laplace's transformations depending of parameter τ. By zero initial conditions, equations (2) and (3) 
represent the system of two ordinary differential equations by parameter x, and transformed into the 
form: 
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Where: 
Gw(s,x), Pw(s,x), Cw(s,x) and Ww(s,x) are variables of  Laplace's transformations by gw(τ,x), 
pw(τ,x), cw(τ,x) and ωw(τ,x).  

 
After replacing the integration constants of and required transformations, from the last equations 
appears: 
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Where: ( )sh k sx and ( )ch k sx  - hyperbolic functions. 
Equation (6) describes the change of diffusion flux of water vapor that passes through the wall, while 
equation (7) the changing of the partial pressure of water vapor through the wall. 

 
2. FORMS AND MODELING OF NON-STATIONARY WATER VAPOR DIFFUSION BY A 

FLAT WALL 
If we use into the equations (6) and (7) the boundary conditions which influence on the external 
surface of the wall, ie for x = δ we have GW (s, δ) = Gw, mj (s) and PW (s, δ ) = Pw, mj (s). Also if, in the 
system of equations (6) and (7), we add the equations of convection water vapor from the inside and 
from outside the wall [3]: 

, ,( ) ( ) ( )w mb b wb w mbG s P s P sβ ⎡ ⎤= −⎣ ⎦                                          ... (8) 
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                                   , ,( ) ( ) ( )w mj j w mj wjG s P s P sβ ⎡ ⎤= −⎣ ⎦                                         ... (9) 
So, from the above equations, we achieved the mathematical models of nonstationary diffusion of 
water vapor through the wall between indoor air and wall, and between the wall and outside air. 
Respectively, water vapor flux through the wall from the indoor air to outdoor air: 
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Equation (10), respectively the water vapor flux, can be used also [4]: 
- In function of moisture concentration cw if we replace μ=D, pw=cw, βb=γb, βj=γj; 
- In function of absolute humidity ωw if we replace μ=λd, pw=ωw, βb=αdb, βj=αd j.  

 
In Table 1 are given forms and models of non-stationary water vapor diffusion by a flat wall, 
respectively the expressions for water vapor flux of the wall with its features, in view of the partial 
pressure pw, in view of the water vapor concentration cW, and in function of absolute humidity wω.  
 
Table 1. Forms and models of non-stationary water vapor diffusion by a flat wall 

In function of pw, Pa In function of cw, kg/m3 In function of ωw, kg/kg 
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3. ANALYSIS OF NON-STACIONARY WATER VAPOR DIFFUSION BY A FLAT WALL 
In view of the upper expressions, by means of the simulations respectively the diagrams which are 
presented in continuity, it is analyzed the non-stationary water vapor diffusion by a flat wall. 
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Figure 2. Changing of water vapor flux, 
kg/(m2s), for cases where δ= 0.1, 0.2, 0.3, 
0.4; μd = 10 and χ = 0.6, in function of 
temperature 

 Figure 3. Changing of water vapor flux, kg/(m2s), 
for cases where δ=0.3, μd=5; 10; 100; 1000 dhe 
χ=0.6, in function of temperature 
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Figure  4. Changing of water vapor flux, kg/(m2s), for cases where δ=0.3, μd=10  dhe χ=0.1; 0.3; 0.6; 

0.9; 1, in function of temperature 
 
 
4. CONCLUSION 
In this paper is given an analogy of the water vapor transmission through the flat wall by heat 
transmission. However, the basis of this paper lies in the formulation of analytical expressions of non-
stationary diffusion of water vapor, the adducting of the modeling and presentation of water vapor flux 
in different forms, including energy and mass convection and conduction through the flat wall. The 
importance of analytical expressions is given by the above diagrams (figures 2, 3, and 4) where the 
practice part is reflected to the analysis of thermal flux by changing parameters such as thickness of 
the wall, relative humidity and permeability coefficient of materials. 
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