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ABSTRACT 
A mathematical model was developed for determining the elastic springback of internal wall of the 
sample after rifling, using method of cold forming by means of rifling tools, based on experimental 
measurements for the three variable influential parameter (the influence of groove relative depth, the 
geometry of the sample cross-section, and material type) with minimum and maximum values 
according to factor plan 23 and on the basis of regression analysis.  
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1. MATHEMATICAL MODEL FOR DETERMINATION OF ELASTIC SPRINGBACK OF 
INTERNAL WALL AFTER RIFLING USING METHOD OF COLD FORMING BASED ON 
FACTOR PLAN 23 

The three influential factors are investigated in factor 
experiment 23 on two levels, and for these cases the plan 
matrix was set up. The models for elastic springback are set 
in this paper, with the matrix of factors: the influence of 
groove relative depth, sample geometry, and material type. 
Experimenatal research are  carried out with triple repetition 
of the experiment for the same combination of factor levels, 
which enables the evaluation of the experimental errors, and 
values of elastic springback are obtained, (Tables 1 and 2), 
and average values were used. 

 
Figure 1. Sample after rifling by tool drawing 

 
2.  MATHEMATICAL MODEL FOR DETERMINATION OF ELASTIC SPRINGBACK  
Δr1 = Δr1(ra/r; R/r; ksr/G) 
Model for determining the elastic springback is set in the following form: 
 Δr1 = Δr1(ra/r; R/r; ksr/G) 
 Δr1 = Δr1(X1;X2;X3) 
Where: 

ra/r –  Ratio between the tool radius and radius of the sample aperture, the influence of groove 
relative depth, 
R/r -  Ratio between external and internal radius of the sample, the cross-sectional geometry of  the 
sample, 
ksr -  Specific deformation resistance of the material and  
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G -  Shear modulus of the material. 
X1 -  Influence factor of the relative depth of groove 
X1min = (ra/r)min ,  X1max = (ra/r)max  
X2 -  Influence factor of the geometry of sample cross-section 
X2min = (R/r)min ,  X2max = (R/r)max  
X3 -  Influence factor of the type of material 
X3min = (ksr/G)min   for C10E, X3max = (ksr/G)max  for AlCu5 

 

As complete three-factor orthogonal plan provides, in addition to the main effects of factors, the 
assessment and effects of mutual effects of the first and second order, it was chosen for mathematical 
model describing the process: 
ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3                                                                 (1)    
             

Test results are listed in Table 1. Encoding of factors was derived through the transformation 
equations:  
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Mathematical model describing the process is in the following form: 
y = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3                                                                         (2) 
 
   Table 1. Matrix plan with experimental results 

Plan PLAN - MATRIX EXPERIMENTAL RESULTS
points x0 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 y1 y2 y3 yi

1 1 -1 -1 -1 1 1 1 -1 8,0 8,0 10,0 8,667
2 1 1 -1 -1 -1 -1 1 1 16,0 17,0 16,0 16,333
3 1 -1 1 -1 -1 1 -1 1 10,0 9,0 10,0 9,667
4 1 1 1 -1 1 -1 -1 -1 22,0 20,0 22,0 21,333
5 1 -1 -1 1 1 -1 -1 1 12,0 10,0 13,0 11,667
6 1 1 -1 1 -1 1 -1 -1 26,0 27,0 26,0 26,333
7 1 -1 1 1 -1 -1 1 -1 14,0 13,0 15,0 14,000
8 1 1 1 1 1 1 1 1 34,0 37,0 34,0 35,000

Basic level 1,080 2,600 245,0  
Inter.variat. 0,050 0,380 55,0
Upper level 1,130 2,980 300,0  
Lower level 1,030 2,220 190,0

 
 

2.1. Calculating model parameters  
Method of multi-factor orthogonal plans simplifies the model equations [1,2,3,4,5], of diffuse systems. 
The simple form of the equation parameters of response functions (multiple regression coefficients) is 
obtained using the properties of orthogonal plans, according to which the correlation matrix transforms 
into the diagonal matrix. 
The values of the model parameters are: 

b
N

x y i N Ni iu u
u

N
k= = =

=
∑1

0 1 2 2
1

, , , ,..., ;                                                                           (3) 

therefore, calculating with mean values of equation: 
 
 b 0 = 17,875;              b1 = 6,8725;               b2 = 2,125;              b3 = 3,875;  
 b12 = 1,2925;             b13 = 2,0425;             b23 = 0,625;            b123 = 0,2925 
 

and model in coded coordinates is: 
 

ŷ = b0 + b1 x1 + b2 x2 + b3 x3 + b12 x1x2 + b13 x1x3 + b23 x2x3 + b123 x1x2x3                        
 

   ŷ = 17,875 + 6,8725 x1 + 2,125 x2 + 3,875 x3 + 1,2925 x1x2 + 2,0425 x1x3  
       + 0,625 x2x3 + 0,2925 x1x2x3                                                                                                           (4) 
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Transformation into natural coordinates y = f(X1, X2, X3) is performed using abovementioned 
transformation equations.  
 
2.2. Checking model signifficance 
To calculate the error of the experiment, according to the calculations from the table (1), for the output 
values obtained, the sum of squares equation at the same repetition is: 
s2(y) =s

2

E=10/16= 0,624875;    fE= N(m-1) = 8(3-1)=16,                                                                   (5) 
                              
System of repetition of experiments in this example is the orthogonal plan and dispersion of model 
parameters is done according to the equation [1,2,3,4,5]: 
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Table 2.  Experimental data 
Plan                                EXPERIMENTAL REZULTS     

points y1 y2 y3   y   si2  ŷi  (yi‐ŷ)2  Σyi
2/(n-1) (Σyi)2/(n*(n-1)) 

1 8,0 8,0 10,0 8,667 1,333 8,701 0,001 114,0 112,667 
2 16,0 17,0 16,0 16,333 0,333 16,233 0,010 400,5         400,167 

3 10,0 9,0 10,0 9.667 0,333 9,787 0,014 140,5 140,167 
4 22,0 20,0 22,0 21,333 1,333 21,455 0,015 684,0 682,667 
5 12,0 10,0 13,0 11,667 2,333 11,785 0,014 206,5 204,167 
6 26,0 27,0 26,0 26,333 0,333 26,213 0,014 1040,5 1040,167 

7 14,0 13,0 15,0 14,000 1,000 14,115 0,013         295,0         294,000 
8 34,0 37,0 34,0 35,000 3,000 34,875 0,016 1840,5 1837,5 

    17,875     10,000  0,098   

 
Rating significance of any first order model parameter is performed independently of the others. The 
aim of evaluation is to test the null hypothesis bi=0. This means that the group of non-signifficant 
parameters can be excluded from the model, without correcting values of other signifficant parameters 
that remain in the model. 
According to t-criterion, with degrees of freedom fE = N(m-1) = 8(3-1) =16, we obtain the calculated 

values tr for t-criterion from equation: ( )i
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and similarly: 
tr1 = 42,5916;  tr2 = 13,1694;  tr3 = 24,0149;  tr13 = 12,6581;  tr23 = 3,87337. 
For degrees of freedom fE = N(n-1) = 16 (using t-criterion for assesment of signifficance of model 
parameters we take the number of degrees of freedom ( fE ) with which dispersion of experiment s2(y)= 
(s2

E), is determined and assumed signifficance level α=5% will be equal to the nominal value tt = 
1,75, and according to the signifficance condition tri > tt parameters: b0, b1, b2, b3, b12, b13, and b23 and 
b123  are signifficant, and model finally becomes: 
 
ŷ = 17,875 + 6,8725 x1 + 2,125 x2 + 3,875 x3 + 1,2925 x1x2 + 2,0425 x1x3 + 0,625           
       x2x3 + 0,2925 x1x2x3                                                                   (7)                                                                            
or, in natural coordinates (using abovementioned transformation equations): 
ŷ = 58,18 - 49,087 X1 -1,156 X2 - 0,045 X3 - 0,55 X1 X2 + 0,01495 X1X3 -       
       0,2639 X2X3 + 0,2799 X1X2X3                                                      (8)                          
                    
The model for determination of elastic springback in function of covered influential factors has the 
folowing form:  
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Δr1 = 58,18 - 49,087( ra/r) - 1,156( R/r) - 0,045 (ksr/G) - 0,55( ra/r)( R/r) +        
         0,01495( ra/r)(ksr/G) - 0,2639(R/r) (ksr/G)  + 0,2799(ra/r )(R/r) (ksr/G)                                  (9)           
  
2.3. Checking model adequacy   
Checking the adequacy of the model, in the general case, consists of comparing the dispersion of 
experimental results with regression line (s2

R) and dispersion of the experimental results in points of 
multi-factorial space (s2

E) over Fisher's criterion. The Fisher 's criterion uses s2
E instead of s2

R, 
representing dispersion of mean values of experimental results with respect to the regression line. 
The next step of dispersion analysis in the mathematical process modeling includes checking the 
adequacy of the model. Since it is a system of repeating the experiment n - times at each point of 
hypercube, the dispersion will be related to the adequacy of models: 
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The next step of the dispersion analysis in the mathematical modeling process includes checking the 
adequacy of the model. Since it is a system of n - times repeated experiments at each point of 
hypercube, the dispersion will be related to the adequacy of models: 

Then from equation: 2
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the calculated value is obtained: Fr = 0,073665/0,624875 = 0,117887                                          (13) 
Since the obtained computational value is less than table value Ft =3 for fLF =4, fE = 16 i α=5%, i.e. 
Fr = 0,0589435 <  Ft = 3, and the obtained model (multiple regression equation) adequately describes 
the relevant three-factor process. 
 
2.4. Determination of the limits of model reliability  
Limits of reliability of model parameters are defined by equations: 
bi ± Δbi = bi ± ts(bi) = bi ± t√cii s(y)                                                                                            (14) 
therefore:  
Δbi = ± ts(bi) = ± 1,75 ⋅ 0,161358 = ± 0,2823763                                                                              (15) 
where: t = tt = 1,75 for fE = 16  and  α=5%. 
 
3. CONCLUSION 
Using factorial plan 23 and experimental research, performed with the triple repetition of the 
experiment, with the same combination of factor levels, the drwaing force values are obtained, in a 
mathematical model that encompasses three influential factors. In the experimental part, the influential 
factors are varied from minimum to maximum values. Targeted, small scale experimental tests, with 
the selection of influential factors and applying the abovementioned factorial plan, we can get the 
reliable mathematical models for calculating the required values. 
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