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ABSTRACT 
The paper presents the results of four damage identification methods in beams. The first technique was 
developed by the author in [1] and presented in [2]. The comparison was conducted on the base of the 
available results presented in [3,4,5]. The identification of damage location and its depth in the first 
technique relays on previously established numerical model and regression relations between changes 
in natural frequencies and damage parameters. The other methods take into account changes in modal 
energy and stiffness variation with damage characteristics. Although the use of regression analysis 
makes the first method approximate, the results are quite satisfactory and at least as good as the 
results obtained by the other compared methods.  
Key words: vibrations, damage identification  
 
 
1. INTRODUCTION 
Vibration based damage identification techniques are based on the fact that physical properties of a 
structure are affected by presence of damage, which directly cause changes in modal parameters, such 
as natural frequencies, damping factors, and mode shapes of the structure. This means that monitoring 
the changes in modal parameters can be efficiently used for assessing the structural integrity, that is, to 
detect presence of a damage and its extent. 
Various methods have been proposed to identify damage parameters in structures. The method of 
using vibration data for detecting cracks appeared in the 1940s. A comprehensive survey of the 
available literature can be found in [6,7]. These reports reviewed various methods on detection and 
identification of structural damage using vibration based testing.  
This paper compares the results of damage identification presented in four published methods.  
 
2.  BRIEF SURVEY AND RESULTS OF THE COMPARED IDENTIFICATION METHODS 
 
2.1.  Identification method No.1, [2] 
The first identification technique was developed by the author in [1] and presented in [2]. Basic idea 
for this identification technique lies in the fact that natural frequencies of a structure depends on its 
mass and stiffness following the matrix equation for undamped natural vibrations, Eq.(1): 

  0=+ KqqM &&  .                                            (1) 
Here, M  is the mass matrix, K is the stiffness matrix, and q&&  and q  are the acceleration and 
displacement vectors, respectively. The eigenvalues of Eq. (1) correspond to the undamped natural 
frequencies of the structure. Structural damages alter the mass and stiffness matrices and, 
consequently, the natural frequencies of a structure change.  
The first technique refers to a simple case of a free-free beam, Fig.1. The numerical model of the beam 
had the following properties: length Lb=400 mm, height H=8,16 mm, width B=8,12 mm, modulus of 
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elasticity E=206,8 GPa, mass density ρ=7820 kg/m3, and Poisson’s coefficient ν=0,29. The beam is 
modeled using solid elements in software I-DEAS Master Modeler 9. The damage is simulated as a 

narrow open notch perpendicular to the 
beam axis. The location of the damage is 
Ld, its depth is a, and the width of the notch 
is 1mm. Relative location L = Ld / Lb and 
relative depth of the damage D=a/H were 
varied and the first four natural frequencies 
corresponding to the bending modes of the 
undamaged and the damaged beam were 
calculated. Due to structural symmetry, the 
location of the notch Ld measured from the 
left end of the beam was varied from 10 

mm to 200 mm in 10 mm increments. The depth a of the notch was varied from 1 mm to 4 mm in 1 
mm increments. Then, the relative frequency parameters FI = fI(d) / fI(u) , I=1,2,3,4, were calculated. 
Here, fI represents the Ith natural frequency; subscripts (d) and (u) denote damaged and undamaged 
beams, respectively. 
The numerical values of parameters FI, I=1,2,3,4, were taken as the input data for establishing the 
regression curves that describe relations between the relative frequency parameters and damage 
parameters (relative location and relative depth). The software STATISTICA 6.0 (Nonlinear 
Estimation option) was used for statistical estimation of these regression relations, [8]. The appropriate 
regression relations can be found by trial-and-error or intuitively for any type of the real beam taking 
into account its dimensions, material, boundary conditions, etc. 
For the beam under consideration, the best results were obtained when regression relations include 
quadratic influence of the relative depth D and polynomial influence of the relative location L, as 
shown through Eqs. (2,3,4,5): 
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The corresponding coefficients of correlation are 
very high (0.996 for F1, F2, F3, and 0.998 for F4).  
The largest differences between the values obtained 
numerically and those calculated by regression 
relations are at those locations where nodes and 
maximal amplitudes of the particular mode shapes 
occur. This results from the nature of regression 
relations to smooth the data at extreme points. 
Each of the regression surfaces FI (D,L) when cut by 
a horizontal plane FI =const. gives the intersection 
curve which shows all possible values of D and L 
that refer to that frequency change. The intersection 
curves obtained by FI, I=1,2,3,4, should theoretically 
give a common intersection point in D-L plane, 
which shows the values of damage parameters Dest 
and Lest, see [9]. However, due to inevitable errors in 
modeling, regression analysis and measurement, it is 
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Figure 1. Geometry of the free-free beam 
with a notch 

Figure 2. Results of damage 
identification method No.1
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more reliable to locate this point using more frequency changes. 
 
Using Eqs.(2)-(5), the values of the unknown L and D can be found for each combination of two 
different frequency parameters FI and FJ, I=/J (excluding the complex values as well as negative 
values of D, which are meaningless). 
This technique proposes finding three closest intersection points of frequency curves, i.e. those that 
give minimal sum of their distances from their mean value. The coordinates of their mean value can be 
adopted to represent the damage parameters. The only prerequisite here is that this mean value should 
not estimate the damage much beyond the numerically observed ranges of L and D (here, for L=0.025 
to 0.5 and D=0.125 to 0.5) that are covered by regression relations. In such a case, the next 
combination of three intersection points giving minimal sum of distances from their mean value 
should be appropriate. 
The procedure of finding three closest points was repeated for 28 cases of damage parameters (7 
damage locations with 4 depths) using pseudo-experimental data, self-generated from the numerical 
model. The results obtained allow the evaluation of the procedure effectiveness and resolution. The 
results of this training examination are shown in Fig.2.  
 
2.2.  Identification method No.2, [3] 
The identification method in [3] uses crack location model and crack size model that are formulated by 
relating fractional changes in modal energy to changes in natural frequencies due to damage. The 
verification of the proposed identification scheme is performed using the available test data for a free-
free beam published in [10]. Test specimens were steel beams with 32 mm x 16 mm rectangular cross-
section and 0,72 m long. The corresponding material properties were: E=206 GPa, ν=0,29 and ρ= 
7650 kg/m3. The results of this identification method using first four frequencies are shown in Fig.3. 

                
2.3.  Identification method No.3, [4] 
The method presented in [4] is based on finding the intersection points of plots representing the 
variation of stiffness with crack location. For analytical approach, the crack was represented as a 
rotational spring. The depth of the crack is then found using the fracture mechanics relation between 
stiffnes and crack size. First three frequencies are used in this technique. For numerical analysis, the 
stepped beam was discretised by eight-noded isoparametric elements and quarter-point singularity 
elements were used around the crack tip. Material data were: E=210 GPa, ν=0,3, ρ=7860 kg/m3. The 
results published in [4] are shown in Fig.4. 
 
2.4.  Identification method No.4, [5] 
Like in [4], the identification method presented in [5] is also based on finding the intersection points of 
curves representing the change of a structure stiffness with damage location. However, in this method 

Figure 3. Results of identification method No.2 Figure 4. Results of identification method No.3 
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short Timoshenko beams are considered, which include the effects of shear deformation and rotational 
inertia. The crack extension is estimated from a change in the first natural frequency - using the 
fracture mechanics formulae which relate the stiffness and damage magnitude. The results of crack 
identification in a short cantilever beam are shown in Fig.5. 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. CONCLUSIONS 
The aim of the study was to show and compare the results of various damage identification methods 
based on vibration data. As can be seen, each of the compared methods is not absolutely accurate. 
Although the use of regression analysis makes method No.1 approximate, the results are quite 
satisfactory and at least as good as the results obtained by the other methods compared. The 
identification results are affected by modeling and measurements errors especially in case of small 
frequency changes due to minor cracks. Each technique requires different modeling efforts and 
computer time.  
Consequently, great efforts are still put towards developing new, more reliable, efficient, and less 
tedious detection techniques. From an engineering point of view, the optimal method for damage 
identification should give as accurate results within reasonable time. 
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Figure 5. Results of damage identification method No.4: 
 a) identification of relative location for D=0,405 and D=0,506;  

b) identification of relative depth for L=0,5
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