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ABSTRACT
We consider the singularly perturbed selfadjoint one-dimensional semilinear reaction-diffusion
problem

Ly:=&’y'(x)=f(xy), on (0.1)
y(0)=0; y(1)=0,

where f(x,y) is a non-linear function. For this problem, using the spline-method with the natural
choice of functions, a new difference scheme is given on a non-uniform mesh. The constructed non-
linear difference scheme has uniform convergence in points of uneven division segments. A numerical
exampleis given.
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1. INTRODUCTION
We consider the semilinear singularly perturbed problem:

£y (x)=f(xy), on (0.1) (1)
y(0)=0; y(1)=0, )

where 0< ¢ <1. Assume that the nonlinear function f (X, y) is continuously differentiable, and that it
has a strictly positive derivative with respect to Y, etc.
of
—=f,>m>0 on [ 0,1 ]X R (m=const.) (3)
ay y
A solution Yy of (1) — (2) usually exhibits sharp boundary layers at the endpoints of (0,1), when the

parameter & is near zero. When classical numerical methods are applied to (1)-(2), one does not
obtain accurate results on the entire interval (0,1), because we shall use nonstandard discretisation of

(D-2).

2. CONSTRUCTION OF THE NONLINEAR DIFFERENCE SCHEME
Let us write the differential equation (1) in an equivalent form

L, y(X):=£’y"(x)-7 y(X)=w(x,y), on [0.], 4)
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where l//(X, y)z f(X, y)— 7Y, andy=m is a chosen constant. Consider an arbitrary grid
0=x, <X <X, <..<Xy =1, and consider the following boundary problems
L. u, (X):: 0, on ()(i ,XM); (%)=L u(%,)=0, (i =0.L..., N —1) (5a)
Lu(x)=0, on (%,%,); u(x)=0, u(x,)=1, (i=01l.,N-1) (5b)

We denote the solutions of problems (5a) and (5b) by ui' (X), U-”(X) (i =0,...., N—l),

I
respectively.
Consider a new boundary problem

Lg yi (X): 4 (Xs yl) > on (Xi’XiH) (I :Oﬁl""’ N _1) (6)

yx)=y(x) 5 vxa)=y (%)
Clearly, we have Y, (X)E y(x) on [O,l] (i =0,1,.., N —1). The solution of (6) is given by

X1
Yi(x)=Cul ()+Cu' ()+ [ G(xs)p(sy(s)ds  (xelx.x,]).
X
where G, (X, S) is the Green’s function associated with the operator L, on segment [Xi ,Xm]. The

function G, (X, S) in this case has the following form

N ! : < X<S< X
(3i (X,S)= . 1 ul (X) u| (S) 4 XI SXsS8s X|+l , (7)
ew(s)|u' (x)u'(s) ; X <S<X< X,

where W (s)=u!" (s)(u! (x)), s —u' (s)(u (x))’ xes .
Clearly, W, (S);t 0 (Se [Xi,XM]), because solutions U, and U, are linearly independent .
From boundary conditions in (6), it follows that C, = y(% )=¥;,C, = V(%)= Yia
(i=0,L,.,N-1).
Hence, solution Y; of (6) on the segment [Xi , X +l] has the following form

X 41

y, ()= yiu! (x)+ y;..u" (%) + J- G (% 8)y (s y(s))ds. ®)

%

Functions uiI (X) and uiII (X) are known from earlier papers (see e.g. [2] ), and have forms
[ _Sinh(ﬂ(xiﬂ_x)) i () sinh (B(x=x))
Ui (X)_ sinh(ﬂh) > U (X)_ Sll’lh(ﬁhl) (Xe[)(i’)(i+1])v (9)
(i =0,L..., N —1) , where ﬂzﬁ, h=x%,-X%.
£
Boundary problem: L, y(x) =y (X, y) on (0,1), y(0)=y(1) =0, (10)
has a unique continuously differentiable solution y(x). Since Y, (X) = y(x) na [Xi , XM],
(i=0,1,..,N=1) we have that y/(X)|,_, =¥/, (X)|,.,, » ((=12,...,N=1).
Now, differentiating (8), and also by yi’(x) lxex, = Y, (X) lxx » (i =12,.., N —1) , we get
Yia (uil—l(x)) x=x + yi[ (uilll (X)) =% (uiI (X)) x=% ]"‘ Yiu [_<ui” (X)) X=X ]:
d X1 X

=L [ Gles (sy(s)ds— [ G (e (s y(s)as ].., - (1n

% Xi-1

where y, = y(x.) (k=i-1Li,i+1).

794



' ’ ’

We define & =—(ui'_1(x)) - .4, =(ui'll(x))

From (9) it follows that : g =— ;
sinh(Bh_))

Hence, now (11) has the following form:

SRR 2(6(x9)_ v(s¥(s))ds- j $(61(x9),_, v (sy(s))cs
After differentiating, the rigEt hand side in the above equation becomes
3y -0y, +hym—{f y! ))ds-+ I u (s)y (sy(s))ds
Yi=0 ; y,=0 z (i :0,1,..., N-1). (12)

Clearly, we cannot generally explicitly compute the integrals in (12). We approximate
the function i (X, y(x)), on the segment [)(i_1 , X ] by

_ + + .
7= (xy(0) = SLE IR (na [ x]) (=120,
where Y, (i =12,.., N- 1) are approximation values of the solution y(X) of the problem (1) — (3) in
points X; (i =12,..., N —1). Finally from (12) we get the difference scheme

_ _ _ 1 . % _ Xit1 .
&y —dy +hy, :2[‘/4_1 _[ ull, ds+; I ul ds] (i=12,.,N-1).
€ X %
From (9), we have

X1 X1+l
J U (s)ds _1 cosh(ph_) 1 . 1 ’ _[ U (s)ds _1 cosh(ﬂh)_i_ . 1 .
B sinh(Bh_) B sinh(Bh_) sinh(Bh) B sinh(Bh)
Hence, our difference scheme has the following form:
- == 1= - . p
] i_1_di i+b. i = Wi (G- ')+*l//i('+_ 1) > herelsC,: :
ay y y P 16 —§ G —84)s W tgh(An,)

We define C — @, =AC i C,, —a,, = AC,,. We can write the last difference scheme in the form

T+ °

_ _ _ 1— 1 —
&Y, —(G+C, )Y +a, Y, = 7‘//i—lAC| +;l//iAC|+1 (14)
where b =&, and d; =C +C,_,. Since (X, y)= f(X y)—yy, from (14) we have:
_ _ _ _ . — . AC . —
8 Yo (6 G Y+ B Vo o (Vs + )+ S (Y1 )= q =T,
where Ti_l =f [X'_l;)(',y'_l;y'] After some computation, we get:
 +G |- G+a C|++ + G, ta, Gt ACHi
4 Yia— 4 L8 yl RAE y|+1 - fi—l + 1 fi
2 2 2 2 14 14
a+¢c . .
If we define =1, , then the difference scheme (14) gets the simpler form:
6 Yio = (6 + ) i+l Vi :7qfi—l +7:1/+1 fi. (15)
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3. NUMERICAL RESULTS

Consider the following boundary problem
2\,

Y =y +y-10, for x e (0,1)
y(0)=y(1)=0.

We use difference scheme (15) to compute the approximate solution.

Table 1. Error E, , and convergence rates Ord for approximate solution

=2 e=27e=2" =2 =2 g=2B g=27

N =64 | 1.54e-3 | 1.73¢-3 | 1.76e-3 | 1.76¢-3 | 1.76e-3 | 1.76e-3 | 1.76¢e-3 En

2.05 2.01 2.01 2.01 2.01 2.01 2.01 Ord

N =128 | 3.83e-4 | 4.30e-4 | 4.36¢-4 | 4.36¢e-4 | 4.37¢-4 | 4.37c-4 | 4.37¢-4 En

2.01 2.00 2.00 2.00 2.00 2.00 2.00 Ord

N =256 | 9.58¢-5 | 1.07¢-4 | 1.09¢-4 | 1.09¢-4 | 1.09¢-4 | 1.09¢-4 | 1.09¢-4 En

2.00 2.00 2.00 2.00 2.00 2.00 2.00 Ord

N =512 | 2.39¢-5 | 2.68e-5 | 2.72e-5 | 2.72e-5 | 2.72e-5 | 2.72¢e-5 | 2.72¢e-5 En

(y", - (yZn)i , where is (y™); = V(X), approximate values of the unknown function Y,
in i-th points of mesh, n is the number of points in the mesh. The convergence rate (Ord) is defined
by Ord = ln(En) - ln(EZn) )

In2

E, = max

1<i<n

S N / \‘2

Figure 1. Graphics approximates solutions for values £ =27*, ¢=2" and § =27
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