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ABSTRACT 
In this paper is taken for analysis the heat exchanger through which circulates the fluid with definite 
flow and temperature. For the model is taken the heat exchanger with additional electric heater 
placed inside it. Specifically is analyzed and modified the heat exchanger by cases where the heat 
exchanger walls are isolated and not thermally isolated, and when the accumulation of heat can also 
take place into the heat exchanger walls. As a result of the paper are given the mathematical models 
that describe the thermal balances for the mentioned cases and computation of the dynamics of fluid 
temperature into the heat exchanger. Obtained diagrams represent the change of temperature in 
function of time and other thermal-physical parameters. 
Key words: heat direct exchangers, thermal isolation, temperature, flow. 
 
1. INTRODUCTION 
Heat exchangers in the heating and cooling technique can be said that have the main role and heat 
exchange in most cases done by convection [1]. Heat exchangers are different types and materials and 
are classified depending on the direction of fluid flow. For intensive heat exchange from water to the 
wall and from the wall to the secondary part of fluid [2], should be used materials which have large 
thermal conduction and resistance to high pressures (e.g. materials as iron, copper, aluminum and its 
alloys, etc.). 
 
2. DIRECT HEAT EXCHANGERS 

 
2.1 Direct heat exchangers thermally insulated 
In fig. 1 is shown a heat exchanger where heat is transported directly from the thermal mixture mass 
inflow and additional heat through electric heater (steam or any other heater) [3]. In bowl is set a 
mixing tool to mix fluid creating homogeneous thermal field, i.e. the same temperature [4]. As the 
model is taken the dynamic change of temperature at the exit from the exchanger, with the following 
assumptions: mass flow by entrance and exit are constant: mmm dh &&& == ; thermally insulated 

exchanger: 0TQ =& ; ideal mixing in the exchanger: b dt t= ; constant specific heat of fluid [5]: 
.konstcp = , for fluid overlooked member p v⋅  in the expression of specific internal heat 

u i p v= − ⋅ , ie vciu p ⋅== . 
Heat conservation equation has the usual form: 

h el d
dEQ P Q
dτ

+ − =& &                                                                    (1) 
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Figure 1. Isolated directly Heat exchangers  

 
                                  h p hQ m c t= ⋅ ⋅& & ; d p dQ m c t= ⋅ ⋅& & ; dp tcME ⋅⋅=                                        (2)   

Where: E, J – heat energy; Pel , W – electric heater; hQ& , W – incoming heat flux; dQ& , W – outgoing 
heat flux; th, td, 0C – temperatures at the entrance and exit; cp, J/(kgK) – fluid specific heat; M, kg – 
accumulated mass of water. With the recent regulation of expression emerges: 

1d
d h el

p

dtT t t P
d mcτ

+ = + ⋅
&

                                                            (3) 

Time constant is /T M m= & . From the above assumptions derived EDZ (ordinary differential 
equations) standard linear proportional order for members to view. If not fulfilled .konstm =& , 
equation may not be linear as products pd ctm ⋅⋅&  and ph ctm ⋅⋅&  expression no longer linear. Equation 
(3), in the form of Laplace transform is: 

1 1 1( ) ( ) ( ) 
1 1d h el

p

t s t s P s
Ts m c Ts

= + ⋅
+ ⋅ +&

                                                     (4) 

Solution of the equation is: 

0
1 1T

d h el h el
p p

t t P e t t P
m c m c

τ
− ⎡ ⎤⎛ ⎞

= + ⋅ + − + ⋅⎢ ⎥⎜ ⎟⎜ ⎟⋅ ⋅⎢ ⎥⎝ ⎠⎣ ⎦& &
                                   (5) 

2.2 Directly heat exchangers without thermal insulation 
The following is presented the mathematical model which does not differ much from the model above 
except: exchanger isn’t thermally insulated, 0TQ ≠& ; no heat accumulation on the walls of the 
exchanger (exchanger with thin walls), the coefficient of thermal conductivity through the walls is 
infinitely large: ∞=λ . 
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Figure 2. No isolated directly heat exchangers  
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Heat conservation equation now has the following form: 

 
j

d
h el d p

dtQ P Q Q Mc
dα τ

+ − − =& & & or  ( )   d
p h el j j d j p d p

dtmc t P A t t mc t Mc
d

α
τ

⋅ + − ⋅ − − ⋅ =& &        (6) 

After adjustment of the equation (6) is obtained: 

( ) d
p h d p j j el j j j p

dtmc t t mc A P A t Mc
d

α α
τ

⋅ − + ⋅ + + ⋅ ⋅ =& &                         (7) 

if equation (7) divided by ( jjp Acm ⋅+α& ), then we will have: 

1 2 3 1

0

   

1p j j p d
h el d

p j j p j j p j j p j j

k k k T

m c A M c dtt P t t
m c A m c A m c A m c A d

α
α α α α τ

⋅ ⋅ ⋅
⋅ + ⋅ + ⋅ = ⋅ +

⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

&

& & & &
1442443 1442443 1442443 1442443

       (8) 

After adjustment will have: 

1 2 3 1
( )( ) d

h el j d
dtk t k P k t t T

d
ττ

τ
⋅ + ⋅ + ⋅ − = ⋅                                        (9) 

And after converting into Laplace: 
1 2 2

1

( ) ( ) ( ) ( )
1 1 1d h el j

k k kt s t s P s t s
T s Ts Ts

= + ⋅ +
+ + +

                             (10)
 

Solution of the equation is: 

( )1
1 2 3 0 1 2 3

T
d h el j h el jt k t k P k t e t k t k P k t

τ
−

⎡ ⎤= ⋅ + ⋅ + ⋅ + − ⋅ + ⋅ + ⋅⎣ ⎦                              (11)
 

Where 1
p

p j j

M c
T

m c Aα
⋅

=
⋅ + ⋅&

, s – time constant. 

 
2.3. Directly heat exchangers with intensive mixing and without thermal insulation 
This model is based on the assumption that the mixing of fluid flow is very intensive, which provided 
high coefficient of heat convection bα  on the inner side of the wall. Then reached dm tt = , and 
near ∞=λ  have thermal equilibrium equation: 

( )         d
p h el p d p m m

dtmc t P mc t Mc M c
dτ

⋅ + − ⋅ = +& &                                     (12) 

After Laplace transformations obtained forms: 

3 3

1 1 1( ) ( ) ( )   
1 1d h el

p

t s t s P s
T s m c T s

= +
+ ⋅ +&

                                            (13) 

Solution of the equation is: 

3
0

1 1T
d h el h el

p p

t t P e t t P
m c m c

τ
− ⎡ ⎤⎛ ⎞

= + ⋅ + − + ⋅⎢ ⎥⎜ ⎟⎜ ⎟⋅ ⋅⎢ ⎥⎝ ⎠⎣ ⎦& &
                             (14)

 

Where 3
p m m

p

Mc M c
T

mc
+

=
&

 , s – constant time. 

 
3. RESULTS OBTAINED BY DYNAMIC ANALYSIS OF MODELS OF HEAT 
EXCHANGERS 
Judging from previous cases we will see graphically the exit temperature changes depending on the 
time and inflow. General Information: electrical heat capacity Pel= 12000 W, fluid accumulated mass 
M=17 kg, wall accumulated mass Mm=50 kg, the outer surface of the exchangers Aj = 0.5 m2, the 
inflow mass 0.07 0.14m = ÷&  kg/s, entrance temperature th=12 0C, wall temperature tm = 15 0C, for 
time τ = 0÷3600 s, specific heat of water cp=4187 J/(kgK), Initial water temperature t0 = 10 0C. Heat 
transmission coefficient k = 0 KmW 2/  
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Figure 3. Temperature at the exit of fluid 
depending on the time and mass inflow 

Figure 4. Temperature at the exit of fluid 
depending on the time and the mass inflow 

Mass flow m& =0.07 kg/s, 1 11/( 0 )
air water

k
α α

= + + 2,  /( )W m K , 21000 W/(m )water Kα = , 

225 W/(m )air Kα =  
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Figure 5. Temperature at the exit of fluid depending on the time and the mass inflow 

∞=λ ; waterα = ∞ ;  225 W/(m )air jk Kα α= = =  
 
4. CONCLUSION 
Based on the done analysis we see that the maximum temperature achieved at the exit for flow 

07.0=m& kg  is td =159.4020C, which reach for the time τ = 2712,196 s, while for mass inflow 
greater 08.0=m& kg / s, the maximum temperature reached at exit is td = 140.97 0C, for time τ = 
2088,718 s. While the flow 09.0=m&  kg / s, maximum temperature is td = 126.6 0C and time τ = 
1472.16 s. On this basis we see that with increasing mass flow decreases the maximum temperature at 
the exit and the time for its achievement. The same applies to other cases. From the above figures we 
see that thermal processes in the physical sense are dependent on the heat accumulation and flow 
processes and that presented no action inertia, and in fact there are periodic actions. 
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