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ABSTRACT 
In a modelling setting, the rational system of nonnlinear difference equations  
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represents the rule by which two discrete, competitive  populations  reproduce  from one generation to 
the next. The phase variables nx  and ny  denote population sizes during the n-th generation and 
sequence or orbit ( ){ }, : 0,1,n nx y n = K  describes how the populations evolve over time. Competitive 
between the populations is reflected by the fact the transition function for each population is a 
decreasing function of the other population size. 
In this paper we will investigate the rate of convergence of a solution that convergence to the 
equilibrium ( )0,0  of a rational system of difference equations where the parameters a and b are 
positive numbers, and conditions 0x  and 0y  are arbitrary nonnegative numbers. 
Key words: difference equations, global stability, rate of convergence.2 
 
 
1  INTRODUCTION 
The system of a difference equations  
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where the parameters a and b are positive numbers, and initial conditions 0x  and 0y  are arbitrary 
nonnegative numbers, has been investigated in [1]. The equilibrium points ( ),x y  of a system (1) 
satisfy the system of equations 

   2 2, , 0,1,x yx y n
a y b x

= = =
+ +

K .       (2) 

The equilibrium of system (1) are ( )0 0,0E =  for positive values parameters a and b, and 

( ), 1 , 1a bE b a= − −  for 1a ≤  and 1b ≤ , where at least one inequality is strict. Our linearized stabi- 
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ty analysis indicates several (six) cases with different asymptotic behavior depending on the values of 
parameters a and b. 
The following global asymptotic stability result has been obtained in [1]. 

Theroem 1.1  Assume that 1a >  and 1b > . Then the equilibrium point ( )0,0  is a globally 

asymptotically stable, i.e. every  solution ( ){ },n nx y  of system (1) satisfies 

   lim lim 0n n
n n

x y
→∞ →∞

= = . 

The global stable manifold ( )( ) ( ){ }0,0 , : 0, 0sW x y x y= ≥ ≥ . 

Our goal is a to investigate the rate of convergence of solution of a system (1) that converges to the 
equilibrium ( )0 0,0E =  in the regions parameters described in Theorem 1.1. The rate of convergence 
of solutions that convergence to an equilibrium has been obtanied for some two-dimensional system in 
[5] and [6]. The following results gives the rate of convergence of solutions of a systema difference 
equations  
   ( )1n nA B n+ = ⎡ + ⎤⎣ ⎦x x ,         (3) 

where nx  is a k-dimensional vectors, k kA C ×∈  is a constans matrix, and : k kB C+ ×→Z  is a matrix 
function satisfying 
   ( ) 0B n →  when n →∞ ,        (4) 

where ⋅  denotes any matrix norm which is associated with the vector norm. 

Theorem 1.2  ([8])  Assume that condition (4) hold. If nx  is a solution of system (3), then either 

n =x 0  for all large n or 

   lim n n
n→∞

ρ = x           (5) 

exist and is equal to the moduls of one the eigenvalues of matrix A. 

Theorem 1.3  ([8])  Assume that condition (4) hold. If nx  is a solution of system (3), then either 

n =x 0  for all large n or 

   1lim n
n n

+

→∞
ρ =

x
x

          (6) 

exist and is equal to the moduls of one the eigenvalues of matrix A. 
 

2  RATE OF CONVERGENCE 
In this section we will determinate the rate of convergence of a solution that converges to the 
equilibrium ( )0 0,0E = , in case describe in Theorem 1.1. But, we will prove this generally theorem. 

Theorem 2.1  Assume that a solution ( ){ },n nx y  of a system (1) converges to the equilibrium 

( ),E x y=   and E is globally asymptotically stable. The error vector 
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of every solution n ≠x 0  of (1) satisfies both of the following asymptotic relations: 

   ( )( )lim n n i T
n

J E
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= λe   for some 1,2i = ,      (7) 

and 
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e
e

  for some 1,2i =       (9) 
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where ( )( )i TJ Eλ  is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated at 

the equilibrium ( )TJ E . 
Prof. First we will find a system satisfied by the error terms. The error terms are given
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That is 
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Set 
   1

n ne x x= −  and 2
n ne y y= − . 

Then system (9) can be represented as 
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Taking the limits of , ,n n na b c  and nd , we obtain 
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that is 
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where 
   0, 0, 0n n nα → β → γ →  and 0nδ →  when n →∞ . 
Now we have system of the form (3): 
   ( )1n nA B n+ = ⎡ + ⎤⎣ ⎦e e . 
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Thus, the limiting system of error terms can be written as: 
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The system is exactly linearized system of (1) evaluted at the equilibrium ( ),E x y= . Then Theorems 
1.2 and 1.3 imply the result. ▄ 
 
If we get ( ) ( ), 0,0E x y= = , then we obtain the following result. 

Corollary 2.1  Assume that 1a >  and 1b > . Then the equilibrium point ( ) ( ), 0,0E x y= =  is a 
globally asymptotically stable. The error vector of every solution n ≠x 0  of (1) satisfies both of the 
following asymptotic relations: 
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where ( )( )i TJ Eλ  is equal to the moduls of one the eigenvalues of the Jacobian matrix evaluted at 

the equilibrium ( )TJ E  i.e. 1 1,i a b
⎧ ⎫λ ∈⎨ ⎬
⎩ ⎭

. 
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