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ABSTRACT 
Having the same system of phasorial measures (Y1, Y2 and Y3), considered the phasor angles being φ1, 
φ2 and φ3 with φ1 = 0, φ2 = φ and φ3 = 2φ, is trying to bring as simple as the direct succession, inverse 
and homopolar components, which depends only by the Y1 and φ angle. 
The appreciation of the unsymmetrical state can be made only based by the symmetrical components, 
determined using the Stokvis-Fortescue theorem. This mention is important in the context of 
proliferation of the calculus relations, which improvise the unsymmetrical state characterization, 
including in terms of implemented relations in equipments like qualimeter or Power-meter. In 
consequence, the symmetrical components are rigorously calculated based on the next relation, which 
presents the disadvantage to be expressed in complex, existing the less programming environments 
designated to work in this plan: 
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1. THE ITERATIVE CALCULUS METHOD 
Developing (1) through the explaining of the a and a2 operators and identifying the arguments of the 
trigonometric functions such as the sums may be written in an iterative form, based on the same 
summing index, the following set of calculus relations for the symmetrical components is proposed: 
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corresponding to the direct (positive sequence) Yd, inverse (negative sequence) Yi and homopolar 
(zero sequence) Yh components. If the variables Yk, for kЄ {1, 2, 3}, are amplitudes or effective 
values, the variables (Yd, Yi, Yh) are resulting like amplitudes, respectively like effective values. It can 
be remarked that according to (2)-(4), the phases of the symmetrical components may be determined 
as well; the real and imaginary parts of the expressions appear in this order and are comprised between 
square brackets, in the relations (2) and (3), respectively between round brackets, in (4). 
The relations set (2)-(4) represents a scalar, iterative, calculus basis for the symmetrical components, 
which guide to identical results as the Stokvis-Fortescue theorem [4]. 
 
2. SIMULATION AND ANALYSIS OF THE UNBALANCED STATE 
The verification of the symmetrical components calculus relations on as large as possible range of the 
dissymmetry coefficient, was made in [4] through the variation of the phase ϕ  between the successive 
phasors of the three phase system inside the interval ϕ ∈[-2π/3, 2π/3]. This fact permitted the scalling 
of a large domain of unbalanced states, starting from the direct sequence system, established for ϕ =-
2π/3, passing through the omopolar sequence one when ϕ=0 and arriving to the inverse sequence 
(negative) one, for which ϕ =2π/3, even if the phasors modulus was mentained equals. 
Applying the same simulation method of the unbalanced states, the analytically identifying of the 
unbalanced state quantities and indicators is made further on together with the graphical 
representations of these ones. In addition, the range of the variable ϕ  will be extended to a complete 
interval (2π), in order to cover all possible unbalanced states.     
Consequently, the unbalanced state simulation method consists in the following steps: 
- the phasor modulus are considered equals, 

 Y1=Y2=Y3; (5) 
- the phases of the three phasors, expressed in comparison with the variable ϕ∈[-2π/3, 4π/3] and 
considering the first phasor in the axis of the reference system, are given by the relations: 

(6) 
 

so that the three-phase system will be symmetrical for ϕ= ±2π/3 and omopolar for ϕ=0. 
Introducing in (2) the phase quantities corresponding to the hypothesis mathematically expressed 
through (5) and (6), the modulus of the direct component is obtained as follows: 

 (7) 
 
 

where the notation 32 /x πϕ +=  has been used.    
Making the possible restriction and explaining the modulus function, a parts defined function is 
obtained as following: 

 
(8) 

 
 

 
The method is analogously used for the inverse succession component, for which the initial relation is 
(3) and resulting a similar parts defined function, like the next one: 
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Finally, the next function was identified for the homopolar component: 
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The three functions, expressed by the relations (8)-(10), are periodical with the period (2π); the 
graphical representations of these ones are given in figure 1 for the range of the independent variable 

[ ]3432 /,/ ππϕ −∈  and considering the phasor modulus Y1 = 100. 
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The Yd(ϕ) function, given by (8), is continuous in the points where will be null: 
                     { } Zk,k/;k ∈+∈ πππϕ 2322                     (11) 
these ones representing minimum and angular points of the function. 
The maximum of the function Yd(ϕ), YdM =Y1 is given for { } Zk,k/ ∈+−∈ ππϕ 232 a local maximum 
point is existing as well, given by the relation { }( ) Zk,/Yk/YdMl ∈=+∈ 323 1ππϕ . Similar 
considerations can be made for the function Yi(ϕ), correspondent to the inverse (negative) succession: 
the function will be annulled and presents minimum points (and angular) to the 
abscissa { } Zk,k/;k ∈+∈ πππϕ 2342 ; the maximum of the function Yi(ϕ), YiM =Y1 is given for the 
abscissa { } Zk,k/ ∈+∈ ππϕ 232 ; the local maximum points are given by the relation:                          

{ }( ) Zk,/Yk/YdMl ∈=+−∈ 323 1ππϕ . In addition, the same characteristics for the Yh(ϕ) function, 
corresponding to the homopolar (zero succession) component are succinctly presented: the function is 
cancelled and presents minimum (and angular) points to the abscissa 

{ } Zk,k/;k/ ∈++−∈ ππππϕ 232232 ; the maximum of Yi(ϕ), YiM =Y1 is given at the abscissa 
{ } Zk,k ∈∈ πϕ 2 ; the local maximum points:   ( ){ }( ) Zk,/YkYhMl ∈=+∈ 312 1πϕ  

                                                 
3. THE DISSYMMETRY AND ASYMMETRY COEFICIENTS 
The dissymmetry coefficient, named as well as negative unbalance factor (proposed notation - −

Yk ), is 
defined through the percentage ratio between the inverse (negative) succession Yi and direct (positive) 
succession Yd components, given by the relation:  

  .%,
Y
YK

d

i
%id 100⋅=                            (12) 

The asymmetry coefficient, named as well as zero unbalance factor (proposed notation - 0
Yk ), is 

defined through the ratio between the homopolar (zero succession) and direct (positive) succession 
components, in percent: 
 (13) 
 

     
If, in the relation (12), who defines the dissymmetry coefficient, the determined expressions for the 
inverse succession (9) and direct succession (8) components are replaced according to the ranges of 
the corresponding functions and renouncing to percentage expression, the following relation for this 
factor is obtained: 

Figure 1. The symmetrical components Yd, Yi, Yh graphical representations for a phasors 
system generated through h the method of the equal modulus and equal, consecutive, phases 
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Figure 2. The dissymmetry and asymmetry coefficients Kid, Khd 
graphical representations for a phasors system generated by 
the equal amplitudes and equal consecutive phase’s method. 
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The graphical representations for both coefficients are presented in figure 2, for the same defining 
domain of the independent variable [ ]3432 /,/ ππϕ −∈ . The both functions, Kid(ϕ) şi Khd(ϕ), are not 
defined for the values { } Zk,k/;k ∈+∈ πππϕ 2322 . 

 
Restricting the definition 
domain 
to [ ]3432 /,/ ππϕ −∈ , for 
which the graphical 
representations are made, 
it can be demonstrated 
that the function Kid(ϕ) 
presents equal limits to 
the left and to the right, 
even it is not defined in 
origin: 
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In the ϕ=2π/3 abscissa point, the function Kid(ϕ) presents a vertical asymptote. The range of the 
function is Kid(ϕ) ∈[0, ∞), totally covered by the branch of the function from the right side of the 
asymptote, that is for [ ]3432 /,/ ππϕ ∈ , while the branch from the left side of the asymptote, for which 
the argument is placed in the range [ ]3232 /,/ ππϕ −∈ , covers the range Kid(ϕ) ∈[0,1)∪(1, ∞). 
Regarding the function Khd(ϕ), expressed by (14), it has as a vertical asymptote the Y axis, with the 
equation ϕ=0 equation, i.e. at the abscissa for which the function Kid(ϕ) is not defined, and for the 
abscissa where Kid(ϕ) has the vertical asymptote ϕ=2π/3, where is not defined, it presents equal limits, 
to the left and to the right:        

                                             1
32323232

=
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= hd
/,/

hd
/,/

KlimKlim
πϕπϕπϕπϕ

                                                             (16) 

The range of the function is Khd(ϕ) ∈[0, ∞), totally covered by the branch from the left side of the 
asymptote, that is for [ )032 ,/πϕ −∈ , while the function branch from the right side of the asymptote, 
for which the argument is placed in the interval ( ]340 /, πϕ∈ , covers the interval Khd(ϕ) ∈[0,1)∪(1, ∞). 
 
4.  CONCLUSIONS 
The utilization of the Stokvis-Fortescue theorem is essentially to characterize and analyse the 
unbalanced states. The derived scalar relations, like the iterative calculus ones, are very useful and 
practical for the analytical approach of the phasors unbalance systems.   The phasors unbalanced 
systems generation is simple and efficient through the proposed method that is the method of the equal 
modulus and equal, consecutive, phases.  
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