
389

17th International Research/Expert Conference
”Trends in the Development of Machinery and Associated Technology”

TMT 2013, Istanbul, Turkey, 10-11 September 2013

SIMULATION OF A 5-AXIS RV-2AJ ROBOT

Dipl.-Ing. Adnan Šljivo

Doc. dr. sci. Malik Čabaravdić
University of Zenica, Faculty of Mechanical Engineering,

Fakultetska 1, Zenica
Bosnia&Herzegovina

ABSTRACT
The simulation of motion and work of industrial robots is being used more frequently in industry
because it enables generating, testing and optimization of robot programming. In this work the
development of an application for simple RV-2AJ robot simulation in C++ programming language for
Windows OS, with use of OpenGL is presented. This application enables simulation of robot motion
with direct and inverse kinematics calculations, and basic off-line programming of robot. This work is
a foundation for further development of the application for RV-2AJ robot simulation, that should
enable dynamics simulation and development and testing of control algorithms.
Keywords: robot, simulation, RV-2AJ, kinematics

1. INTRODUCTION
Industrial robots are essential component of automated manufacturing systems because of their
versatility and flexibility. On the other side, these characteristics make robots very complex and fragile
machines. Because of this, robot simulation is extremely valuable in employing robots on factory floor
as it allows testing of solutions for complex tasks in virtual environment where it is easier to
manipulate the robot and examine different layouts, scenarios and situations without danger of
damaging real equipment or human injury.

Figure 1. Robot RV-2AJ

390

In this article the development of an application is presented, which enables five axis RV-2AJ robot
motion simulation and provides basic off-line programming support. Robot RV-2AJ, shown in Figure
1., was built by Mitsubishi. It has five rotational joints giving it five degrees of freedom.

2. ROBOT KINEMATICS
In robot kinematic analysis one needs to assign frame to each link. In this work frames have been
assigned according to Denavit-Hartenberg convention which is shown in Figure 2.

Now it is possible to determine Denavit-
Hartenberg parameters, and they are
presented in Table 1. Since all joints are
rotational, the only non-constant parameter is
the angle Ԃi.

2.1. Direct Kinematics
In direct kinematics the goal is to find end-effector coordinates given joint coordinates. When
Denavit-Hartenberg parameters are known, the transformation matrix is given by:

Table 1. Denavit-Hartenberg parameters

i

ai[m] αi [°] di [m] Ԃi [°]

1 0 -90 0,3 0
2 0,25 0 0 -90
3 0,16 0 0 90
4 0 -90 0 -90
5 0 0 0 0

Figure 2. Frames assigned to links

391

௜௜ିଵࢀ ൌ ൦

೔ߴܿ െߴݏ೔ܿఈ೔
೔ߴݏ ೔ܿఈ೔ߴܿ

ఈ೔ݏ೔ߴݏ ܽ௜ܿߴ೔
െܿణ೔ݏఈ೔ ܽ௜ݏణ೔

0 ఈ೔ݏ
0 0

ܿఈ೔ ݀௜
0 1

൪ ... (1)

Now the transformation matrix from base link to end-effector can be obtained as a product of matrices
for every joint given in equation (1):

ହ଴ࢀ ൌ ଵ଴ࢀ ൈ ଶଵࢀ ൈ ଷଶࢀ ൈ ସଷࢀ ൈ ହସࢀ ൌ ቎

݊௫ ௫݋
݊௬ ௬݋

ܽ௫ ௫݌
ܽ௬ ௬݌

݊௭ ௭݋
0 0

ܽ௭ ௭݌
0 1

቏ ... (2)

Here ࢖ is position vector of end-effector, and vectors ࢕ ,࢔ and ࢇare orthogonal unit vectors that define
the orientation of end-effector frame.

2.2. Inverse Kinematics
The problem of inverse kinematics is determination of joint coordinates when end-effector position
and orientation are given. Although there are different methods for solving this problem, in this work
an iterative algorithm based on jacobian transpose matrix was used. In this method joint coordinates
are updated in iteration kas follows:

௞ାଵࢗ ൌ ௞ࢗ ൅ (3) ... ࢗ∆

Here ∆ࢗ is calculated as:

ࢗ∆ ൌ (4) ... ࢋࡷ்ࡶ

Matrix ࡷ is a suitable (5x5) positive definite diagonal weighting matrix. Matrix ࡶis jacobian (6x5)
matrix that is configuration dependant and whose each column corresponds to a jointi:

࢏ࡶ ൌ ൤ࢠ௜ିଵ ൈ ሺ࢖௘ െ ௜ିଵሻ࢖
௜ିଵࢠ

൨ ... (5)

Vector ࢋ is the (6x1) error vector that can be calculated as:

ࢋ ൌ ቈ
ௗ࢖ െ ௘࢖

ଵ
ଶ
ሺ࢔௘ሺࢗሻ ൈ ௗ࢔ ൅ ሻࢗ௘ሺ࢕ ൈ ௗ࢕ ൅ ሻࢗ௘ሺࢇ ൈ ௗሻࢇ

቉ ... (6)

When the error is sufficiently small iterative procedure stops.

3. SIMULATION APPLICATION
The application for robot motion simulation is built based on presented kinematics analysis of robot. It
is capable of solving direct and inverse kinematics, and thanks to used methods it can be used to
simulate different types of robots and not just RV-2AJ.
This application is programmed in C++, where OpenGL is used for visualization and WinAPI for
GUI. Robot 3D model is read from an STL file.
As it is shown in Figure 3., the application enables motion specification in joint coordinates when it
solves direct kinematics, and in world and in tool coordinates, when it solves inverse kinematics. Also,
it displays both world and tool frames, which helps at defining end-effectors motion.
This application also offers a basic support for off-line programming. One can save position in
position list, and then use them in program for robot motion. A limited set of commands is supported,

392

such as a command for moving to a desired point with joint (“MOV”) and linear interpolation
(“MVS”), wait command (DLY), etc.

4. CONCLUSION
In this work the development of an application is presented, that enables robot motion simulation. In
such environment it is much easier to manipulate robot, since user can easily pan, zoom and rotate the
view, define robot movement. Off-line programming support makes it possible for user to try simple
robot programs.
This application should serve as a basis for development of a more robust robot simulation application.
The application structure and used methods for kinematics solving allow relatively easy addition of
different robot models. Also, off-line programming can be expanded to allow much larger amount of
commands, which should allow user to do program tests. In the end, the application in future should
support dynamic simulation, which will be a basis for testing different control algorithms.

5. REFERENCES
[1] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics Modelling,Planning and Control, Springer-

Verlag, London, 2009
[2] S. R. Buss, Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least

Squares methods, University of California, San Diego, 2009
[3] L. Žlajpah, Robot Manipulators, Trends and Development - Robot Simulation for Control Design
[4] S. Anton, T. Fries, T. Horsch, F. W. Schröer,C.Willnow, C. Wolf, A Framework for Realistic Robot

Simulation and Visualisation
[5] Mitsubishi Industrial Robot, RV-1A/RV-2AJ Series, Standard Specifications Manual
[6] M. Coman, S. Stan, M. Manic, R. Bălan, Design, Simulation and Control in Virtual Reality of a RV-2AJ

robot
[7] M. S. Alshamasin, F. Ionescu, R. T. Al-Kasasbeh, Kinematic Modeling and Simulation of a SCARA Robot

by Using Solid Dynamics and Verification by MATLAB/Simulink, EuroJournals Publishing, Inc. 2009
[8] M. A. Qassem, I. Abuhadrous, H. Elaydi, Modeling and Simulation of 5 DOF Educational Robot Arm

Figure 3. Simulation application window

