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ABSTRACT 
Based on the projective-iterative versions (PIV) finite element method (FEM) calculation schemes 
developed for determining the stress-strain state of shell-type structures with openings. Cutouts 
(discontinuities) characterize the design features or are damage defects and appear in various 
situations of exploitation. Plastic deformation of the material is taken into account when using the 
method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic 
problems. Developed PIV significant savings of computer calculation, compared with the traditional 
FEM (calculated on a fine mesh). Designed scheme allows analysis of the mutual influence of 
openings. The analysis of the transformation zone of plastic deformation is developed. For 
definiteness, the cylindrical shell structures with several rectangular openings is considered. 
Keywords: finite element method, projective-iterative schemes, shell structures, opening, 
elastoplastic deformation 
 
1. INTRODUCTION. FORMULATION OF PROBLEM 
The shell-type structures are optimal combination of necessary strength and minimum weight. 
Structures of modern techniques have often openings of various types. Cutouts (discontinuities) 
characterize the design features or are damage defects and appear in technological manufacturing 
processes or in various situations of exploitation. They reduce to concentration of stresses. 
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Such structures are relevant to the priority areas of technology (aviation, space technology, oil and gas 
industry, etc.) [1, 2]. 
High load levels lead to plastic deformation. This fact taken into account when using the method of 
elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems [3]. 
The fields of stresses and strains that arise near openings’ edges have the mutual influence on each 
other. This influence depends on the openings’ shape, dimensions, quantity, and spacing. Plastic 
deformation appreciably changes the pattern of this interaction. Transformation of above-mentioned 
fields near the openings cause changes to the process of exhausting the carrying capacity. 
The plastic deformation zones, stress distributions, loads that correspond to the start of merging and 
further transformation in the course of loading make it possible to predict load-carrying ability of 
shell-type structures with openings. 
Let us consider shell-type structures with rectangular openings. For concreteness, consider a 
cylindrical shell with three openings. 
 
2. FEATURES OF USED SOLUTION METHODS 
The numerical finite element method (FEM) is an efficient method for solution of various complex 
problems of deformation and critical states (carrying capacity, stability) of such structures.  
The projective-iterative versions (PIV) of FEM essentially reduces the needed for calculations 
performed by means of personal computers, which is of importance in simulation of complex 
nonlinear deformation of shell-type structures with openings of various types. 
The theoretical foundations of PIV FEM in [4-7] and in series of works in mathematics problems are 
presented. The basic idea is as follows. 
The problem of finding the minimum of the potential energy functional, defining the stress-strain state 
of shell structure members is the conditional minimization problem 
 

[ ] inf,I z z Z→ ∈ ,     (1) 
 
where [ ]I z  is the functional bounded on a set of cinematically possible displacements Z of the real 
Hilbert space. 
The extremum problem (1) is approximated, through the use of FEM, by a series of discrete 
extremum problems (n = 1, 2, ...). Each of the problem is solved via some iterative process, but not 
completely. Starting from an arbitrary rather rough breakdown of the mesh, one constructs just a few 
approximations (kn ) to the minimum point of the n th multivariable function. The last approximation 
is interpolated into a finer finite element mesh and serves an initial approximation to the minimum 
point of the next function at the (n+1) th step of the PIV process that goes on until a present 
calculation accuracy is achieved. 
The PIV FEM models have been applied successfully of elastic boundary value problems, 
elastoplastic stress-strain state problems for plates with various openings, plane elastoplastic 
deformation problems for structured media containing assembles of pores, cracks, inclusions [2, 7]. 
Use of this models provides a significant (dozens - fold) saving in computation time in comparison to 
the conventional FEM. 
For solution of elastoplastic problems we use the method of variable elastic parameters (VEP) – 
version of elastic solutions methods [3, 7]. The method give construction of iterative process, in each 
approximation an elasticity problem with variable shear modulus G′ , modulus of elasticity E′  and 
Poisson’s ratio ν ′  is solved. For deformation theory we have for each approximation 
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where ijσ  and ijε  are the components of stresses and strains tensors, iσ  and iε  are the stress and 
strain intensities, σ  is the mean stress, ijδ  is the Kronecker delta. 
For a first approximation, we set 1E E′ = , 1′ν = ν  and determine 1ijσ , 1iσ , 1iε , 1ψ . In a second 
approximation we have 2 1 1i iE′ = σ ε , 2′ν  (2) at 1ψ  and so on. The process is run until two successive 
approximations coincide to within a given accuracy, 1m mE E −′ ′≈ . 
Corresponding schemes for the flow theory my be constructed. 
The corresponding minimized energy functional for shell with openings is written as [8] 
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where u , v , and w  are the displacements of the middle surface, α  and β  - coordinates, h  is the shell 
thickness, Ω  is the sheet surface, G′  and ′ν  are the variable elastic parameters for each method VEP 
approximation, 1T , 1S , 1Q  and 1M  are the longitudinal, tangential, transverse force and bending 
moment, respitively which are applied to the shell edges Γ , comma denotes differentiation in the 
coordinate. Stresses in the shell middle surface are given by  
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The strain intensity is determined by the formula 
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3. RESULTS OF NUMERICAL ANALYSIS 
Founded on the PIV FEM procedure, a program in C++ language has been written for the stress-strain 

state analysis of cylindrical shell with three rectangular 
openings. We studied shells ( 1.6L =  m, 1R = m and 

0.004h = m) of D16T aluminum alloy (Fig. 1). The larger 
openings measures 0.4 0.4×  m and the smaller one 0.2 0.2×  m. 
Compressive loads p  were varied from 60 to 90 MPa. The 
center-to-center distances: 1l  - between the small opening and 
the nearest larger opening, 2l  - between two larger openings 
were varied. The offset yield stress sσ  was taken 200 MPa. 
The PIV FEM has been implemented on eight double-folded 
FE meshes of rectangular Hermitian elements. The number nk  
of approximations at the n th step (n =1, 2, ..., 8) of the PIV 

process was chosen as the smallest integer k satisfying the condition 
 

    ( ) ( 1) , 1,...,k k
n n n nz z k k−− ≤ ε = ,    (6) 

Figure 1. Loading scheme of shell 
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where ( )nk

nz  is the solution to the n th finite-dimensional problems and nε  is the preset accuracy of 
computations on the n th mesh. 

Let us consider some results of the 
numerical analysis. 
By way of plane projections of the shell 
evolvent, Fig. 2 shows how the plastic 
strain zones develop in a shell with three 
openings: 1 2l l= =0.8 m, p =45 MPa 
(Fig. 2a); 1l =0.6 m, 2l =0.8 m, p =35 MPa 
(Fig. 2b). 
These zones arise locally at the openings 
edges and at shell ends, merge as the load 
p  grow and l  decreases. The variants of 

mutual influence of the openings will 
differ as the shell and openings 
parameters are changed. 
Using the computation program we can 
determine the loads whereby the plastic 
strain zones start merging to be become 
integral ones. The use PIV FEM models 
in these problems has provided a saving 

of computer time by a factor of 30 to 50 (depending on the class of problems) in comparison to the 
traditional FEM models (on a single mesh). 
The plastic strain zones affect stiffness. The formation of the zones common for the openings 
considerably impairs the resistance of shall-type structures with openings to effective loads. This 
finding can be used in predicting their load-carrying capacity. 
 
4. CONCLUSION 
Founded on PIV FEM models that significantly reduce the computation time (in comparison to the 
conventional FEM models – on a single mesh), stress-strain analysis methods and algorithms for 
elastoplastic shell-type structures containing several rectangular openings are developed. The 
variation of openings parameters, quantity, and center-to-center distances allows one to study the 
formation and transformation of plastic strain zones in the process of loading. Merging of the zones 
leads to a decrease in stiffness; this fact is used in predicting the load-carrying capacity. 
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Figure 2. Distribution of plastic strain zones in a shell 
with openings 


