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ABSTRACT 
In a previous paper, artificial neural networks were employed for modelling average roughness Ra in 
rough honing processes as a function of process variables, namely grain size, density, linear speed, 

tangential speed and pressure, by means of the direct problem. In addition, neural network model was 

compared to statistical models for modelling roughness. In the present paper the inverse problem was 
studied and analyzed by means of neural networks, in which given a certain average roughness Ra 

value, the model predicts process variables to be employed. This is not possible with statistical 

models. Two different approaches were considered: use of a single network or use of five networks. 
Keywords: roughness, neural networks, honing 

 
1. INTRODUCTION 
Abrasive machining processes are in general complex and not linear. In addition, many variables 

affect the process. For these reasons, different authors have employed neural networks for modeling 

grinding processes [1, 2, 3]. In addition, neural networks have shown to improve results obtained 
when modelling roughness in honing processes with respect to statistical models [4]. 

 

While the rest of studies in the literature for honing have addressed the direct process, in which 

surface roughness is predicted as a function of process variables (grain size GS, abrasive density DE, 
pressure PR, tangential speed VT, linear speed VL), in the present paper an inverse process is 

presented. In the inverse problem, given a certain roughness value, neural networks will determine 

process variables to be used in order to obtain it. This is an interesting approach, since it can be used 
as a support for decision taking when selecting process parameters to be used in industry. 

 

2. EXPERIMENTAL METHOD 

A total amount of 33 St-52 cylinders of length 100 mm were machined in a honing test machine. 
Roughness measurements were performed with a Taylor Hobson roughness meter. On each cylinder, 

9 measurements were taken along a diametral circumference at 50 mm of both cylinder ends. 

Measurements were separated 40º. Extreme values were discarded according to the Chauvenet 
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criterion [5] and finally 207 data sets were considered. Obtained results were presented elsewhere 

when solving the direct problem [6]. 

3. DATA TREATMENT 

In order to train the 207 data sets, they were randomly divided into: training sets (70% or 145 data 

sets), validation sets (15% or 31 data sets), and testing sets (15% or 31 data sets), according to the 

recommendations by Goyun [7] and Crowther [8]. In order to generalize results, the study was 
repeated three times, in a way that three random data divisions were performed, called a, b and c. 

 

Training data are used to train each network in an iterative way. Validation data are used to stop 
training when decrease in mean quadratic error is lower than a certain previously defined value, in this 

case 1·10
-10

. Test data are not used in the training process, but will be used for assessing and 

comparing the properties of the network with other models’ properties. 
 

4. CONFIGURATION OF THE NEURAL NETWORK 

According to previous studies [2, 3, 4], recommended network is a multilayer perceptron with 

backpropagation learning algorithm, with either one or two hidden layers, with a non-linear activation 
function. 

 

For one hidden layer, a number of neurons between 4 and 100 were tested, according to Lawrence and 
Peterson [9], with the configuration that is shown in Figure 1. 

 

 
 
 
 

 

For networks with two hidden layers (Figure 2), the optimal number of neurons found for one hidden 

layer was increased in 50 %. Resulting number was divided into two groups: 2/3 of neurons were used 
in the first layer and 1/3 of neurons were used in the second layer. From this starting point, also other 

combinations of neurons were tested. 

 

 
 
 

 

 

 

Figure 1. Configuration of the network with 

one hidden layer 

Figure 2. Configuration of the network with 

two hidden layers 
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Two different approaches are presented. In the first one a unique network has a single input (desired 

roughness Ra) and 5 outputs (GS, DE, VT, VL and PR) (Figure 3). 

 
 

 

 
 

 

The second approach consists of using 5 networks simultaneously, with the same input Ra and one 

output for each variable, as shown in Figure 4. 
 

 
 

 
 

 

 

5. METHODOLOGY FOR SELECTING THE MULTILAYER PERCEPTRON 

For each data division a, b and c, and for each approach, the perceptron configuration that best fits the 

training and validation data was searched. Quadratic mean error (mqe) of the validation set was used 

as a selection parameter.  
                                                 

 

 (1) 
 

 

 

Where ti = experimental Ra value of the i
th
 pattern, 

yi = simulated Ra value of the i
th

 pattern, and 
n = number of paterns. 

 

Different weights were assigned to optimal number of neurons of each data division, taking into 
account mqe of each data division, and a final optimal number of neurons was found. 

 

 
 

 

 

 

Figure 3. Functional diagram of model with 
one neural network 

Figure 4. Functional diagram of model with 

five neural networks 
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6. RESULTS 

6.1. Neural model with one network and one or two hidden layers 
 

For one network with one hidden layer, best network has 70 neurons in the hidden layer. For 

one network with two hidden layers, best network has 71 and 36 neurons in the first and 

second hidden layer respectively. 

 
6.2. Neural model with five networks and one or two hidden layers 

For five networks with one hidden layer, best networks are the ones with 40 neurons for GS, 48 
neurons for DE, 55 neurons for VL, 93 neurons for VT and 57 neurons for PR. 

 

In a similar way, for five networks with two hidden layers, best results were obtained for: 43 and 21 

neurons for GS, 51 and 27 neurons for DE, 53 and 27 neurons for VL, 84 and 40 neurons for VT, and 
56 and 27 neurons for PR. 

 

In order to decide if it is better to use one or two hidden layers in each case, a fourth data division d 
was employed. Networks were compared using mean quadratic error with validation data. 

 

Final results are as follows: 40 neurons for GS, 51 and 27 neurons for DE, 53 and 27 neurons for VL, 

84 and 40 neurons for VT, 57 neurons for PR. 
 

6.3 Selected neural model      

When comparing results for one neural network and five different neural networks, using a similar 
approach that takes into account mqe, a final neural network was selected with two hidden layers of 

71 and 36 neurons respectively. 

 

7. CONCLUSIONS 

When addressing the inverse problem with neural networks in honing processes, which consists of 

determining process variables to be used in order to obtain a certain roughness value, two different 

approaches were used. In the first one only one network was used, with either one or two hidden 
layers. In the second one, five different networks were defined, one for each process variable. In this 

case, also one and two hidden layers were studied. Best results were obtained for one network with 

two hidden layers. 
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