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ABSTRACT 
The demand for Silicon Carbide ceramics has increased significantly in the last decade due to its 
reliable physical and chemical properties. Sometimes, single side grinding for ceramics is preferable 

over surface grinding, because single side grinding has the ability to produce flat surfaces. However, 

the manufacturing cost is still high because of the high tool wear and long machining time. 
Additionally, most of these grinding processes are followed by a lapping process. One of the ways to 

address the high costs is to eliminate the final lapping process by the use of electrolysis in process 

dressing technique (ELID). Part of the solution also entails investigating the influence of different 

variables on the material removal rate and workpiece surface finish. This paper presents the influence 
of different grain size on the roughness. Also, the paper presents first a small introduction to 

fundamentals of ELID. The aim of the paper is to analyze the influence of the grit size upon the 

surface roughness. In order to do this, a full factorial experiment was designed. Based on the 
experimental results, a module was developed for each grit size (wheel) on three levels of each 

variable: the spindle and wheel speed, the applied load and the eccentricity of the workpiece holder. 

Keywords: Silicon Carbide, Fine grinding, Material removal mechanism, Electrolytic In-Process 

Dressing (ELID)  
 

1. INTRODUCTION 

Machining ceramics is challenging because of ceramics’ high hardness and low fracture toughness, 
which limits the machining process in the ductile mode; however, with the proper selection of 

machining properties, the operation still can be administered in ductile mode. With the use of single 

side grinding with lapping kinematics, the workpiece will have constant pressure throughout the 
process [1, 2]. Grinding Silicon Carbide (SiC) with three different spindle and wheel speeds, three 

different pressure loadings, and three eccentricities, which will be explained in the next subsection, 

will determine the significant factors among these variables. 

This experiment aims to find a model that can predict the roughness and identify the significant 
factors among all the variables in addition to the influence of different grain size.  

 

X.1 Eccentricity 
The workpieces will be held in a workpiece holder, which can hold up to 3 workpieces at the same 

time to ensure better flatness and guarantee more accurate results. Three workpiece holders have been 

designed with different eccentricities, which is the distance between the center of the workpiece and 
the center of the workpiece holder “e”. The three eccentricities designed were 17mm, 13mm, and 

9mm.  

 

2. ELID TECHNOLOGY 
The Electrolytic In-Process Dressing (ELID) technique does not require the grinding operation to stop 

for dressing. However, it can be performed during the grinding operation [4]. This technique can be 

applied to any grinding machine without special equipment. This technique uses an electrode, an 
electrolyte, and an electrical DC pulse source. First, the negative pole connects to the electrode, and 

the positive pole connects to the wheel with a smooth brush [5]. There will be a gap between the 
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wheel and electrode of about 0.1 to 0.3mm [6]. With the presence of the coolant fluid, the electrical 

circuit is complete, and it will work as an electrolyte to remove the metal bond from the wheel. 
Removing the metal bond exposes the surface of the wheel to be oxidized. An oxide layer of Fe2O3 

will then accumulate on the wheel. This layer acts as an electrical insulator. Consequently, 

accumulating this layer increases the electrical resistance and decreases the electrical current. At a 

point, the system will reach equilibrium. During grinding, the oxide layer starts to wear out, causing 
the electrical resistance to decrease and the current to increase, which will creating another oxide 

layer to achieve equilibrium [3].  

 

3. SETUP AND EXPRIMENTAL PARAMETERS 

In addition to the three workpiece-holders, three diamond grinding wheels with mesh sizes #400, 

#1000, and #2000 will be running counter clockwise at three different speeds, 1/2, 1/4, 1/8 of the 
spindle speed, and the spindle will be running clockwise with 3 different speeds, 150, 175, 200rpm. 

Each of these combinations will be applied with three different loads. Table 1 illustrates the variables. 

Table 1. The experiment variables (all speeds are in rpm) 

Spindle Speed 

150 175 200 

Wheel Speed  Wheel Speed Wheel Speed 

75 38 19 88 44 22 100 50 25 

Force 

101.04 N 148.13 N 187.37 N 

Eccentricity 

17 mm 13 mm 9 mm 

The machine used was the double sided Lapping/Fine Grinding Melchiorre machine (210-3P). 

Because this experiment is concentrated on a single side grinding, some modifications were made to 
the machine to match the desired concentration. The experiment pauses, and the workpiece is then 

taken out and measured after 5, 10, 20, and 30 minutes. All the collected data are to be placed in a full 

factorial design of experiment model to identify the significant factors among the variables. Factor 
interactions are considered negligible in the calculations because of their low significance. Other 

parameters are kept fixed for the current experiment and will be considered for evaluation in future 

experiments. 
 

4. EXPRIMENTAL RESULTS  

The full factorial design analysis shows that while using the wheel mesh size #400 and #1000, both 
the load applied and the eccentricity have a significant affect on the results. The wheel mesh size 

#2000 has both the load applied and the wheel speed ratio as significant factors. All 81 experimental 

runs for the wheel mesh size #400 resulted in an average surface roughness of 0.094microns, with a 

maximum of 0.137microns, and a minimum of 0.08microns. Wheel mesh size #1000 results have an 
average roughness of 0.045microns, with a maximum roughness of 0.061microns, and a minimum 

roughness of 0.033microns. Wheel mesh size #2000 results have an average roughness of 

0.021microns with a maximum roughness of 0.031microns and an astonishing minimum roughness of 
0.013microns.  

 

5. MODEL AND CALCULATIONS 

The main purpose of this part is to find the exponents that fit the proposed equation. The equation has 

four exponents (C, α, β, and γ) [7]. By considering the roughness as the out come, the proposed 

equation that solves any similar operational conditions is: 

                                                          (1) 

Where (V) is the speed, (F) is the force, (e) is the eccentricity. The speed used depends on the 
significance level. For example, the spindle speed is used for the wheel mesh size #400, while the 

wheel speed ratio is used for both the wheel mesh sizes #1000 and #2000. 
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Since the experimental results, keeping the time constant, gives 81 proposed equations, the Multi-

Correlation theory was used to consider all the data and fit them into four equations. Applying all the 
data on the four equations, leads to the final model for all grinding wheel mesh sizes. The models for 

the wheel #400, #1000, and #2000 are equations 2,3,and 4, respectively.  

                                                                         (2) 

                                                                   (3) 

                                                      (4) 

These models have been verified on the experimental results and have proven within the acceptable 
error percentile of less than 15%. 

 

6. INFLUENCE OF GRAIN SIZE ON THE OUTCOMES 

After conducting the experiment, an analysis is performed to find the influence of different grain sizes 

on the roughness results. Figure 1 illustrates the behavior of the roughness results with time for all 

three grinding wheel mesh sizes. 

 

Figure 1. The bath of the roughness with time 
 

Figure 8 illustrates how the surface quality improved significantly at the beginning of the process. 

After approximately ten minutes, the improvement of the surface quality slows down. The surface 

roughness, after machining the workpiece for twenty minutes, remains almost unchanged. 
Employing the same method applied on finding the models above (equations 2,3,4), a proposed model 

can be established to include the influence of different grain size on the results. The projected model 

has an additional variable “G”, where “G” is the wheel average grain size. The final model proposed 

is: 

                                                (5) 

The prediction for the roughness using this equation is true within the wheel mesh sizes used. To have 
a better prediction, higher and lower wheel mesh sizes should be experimented with. This model has a 

higher error percentage for a couple of reasons. For one, the speed used was the wheel speed ratio. 

This variable was not as significant as the spindle speed while using the wheel mesh size #400. 
 

7. CONCLUSION 

In the present experiment, multiple conclusions can be taken: 

a. The load applied was inverse proportional to the roughness results. From the models proposed, 

increasing the load will always reduce the roughness outcomes. However, this relation is valid for 
any load between the tested experimental loads. Because of the creation of the oxide layer, an 

increase of the load results in lower surface roughness because the load pushed the abrasives to 

penetrate through the oxide layer. 
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b. The eccentricity was proportional with the surface roughness on all three grinding wheel mesh 

sizes. Grinding the workpieces with a smaller eccentricity will result in a lower surface roughness. 
This is because the workpieces ground by smaller eccentricity will have a lower linear speed. 

Based on the trajectory of the grains with different eccentricities, larger eccentricities will travel 

along the whole grinding wheel and will cover the entire area of the grinding wheel. This will 

expose the workpieces to more fresh abrasives, which helped to increase the material removal rate, 
but did not produce better surface roughness. 

c. The spindle speed was used in the wheel mesh size #400 model since it was significant on the 

factorial design. The relationship is inversely proportional between the spindle speed and the 
roughness results. However, wheel speed ratio was used on both grinding wheel mesh sizes #1000 

and #2000 models, as it was significant in their factorial designs. Wheel speed ratio is proportional 

to the roughness results. 
d. A model has been established and tested for the ability to predict future roughness results for each 

grinding wheel mesh size experimented. The models proposed are effective within the range of the 

variables tested. 

e. A model has been established with the influence of the grain size that predicts the roughness. This 
model has 20% of unacceptable results. The acceptable results have about 20% tolerance. 

However, if the grain size used is similar to any of the wheels used in this experiment, using its 

specific model is recommended for more precise results. 
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