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ABSTRACT 
In a modelling setting, the anti-competitive system of rational difference equations in the plane 
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System so-called anti-competitive system is know as system (39,39). In a modelling setting system 

represents evaluation of a system ot two species, where each species in n-th generation helps the 
growth of the other in (n+1)-th generation (cooperation), while at the same time is decreasing its own 

size (self-inhibition). In this paper we will investigate the rate of convergence of a solution that 

convergence to the equilibrium  1 0,0E  of a rational system of difference equations in the plane, 

where the all parameters are positive numbers, and conditions 0x  and 0y  are arbitrary non-negative 

numbers. 
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1.  INTRODUCTION 

The system of a difference equations  
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where the parameters 1 1 1 2 2, , , ,A B C A B  and C2 and are positive numbers, and initial conditions 0x  

and 0y  are arbitrary nonnegative numbers, has been investigated in [7]. 

System (1) provides an example of dynamics that is characters for anti-competitive systems. The 
global dynamics of many subsystems of (1) can be obtained by taking one or more parameters to be 0 

in our results. The equilibrium points  ,x y  of a system (1) satisfy the system of equations 
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The equilibrium of system (1) are  1 0,0E   wich always exists, and  2 ,E x y  for 0x  , 0y   

from the system (2) can be obtained 
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These two equilibrium curves intersect in the first quadrant at the points:  1 0,0E   and  2 ,E x y .  
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Analysis linearized stability indicates several cases with different asymptotic behavior depending on 

the values of parameters 1 1 1 2 2, , , ,A B C A B  and C2. 

The following global asymptotic stability result has been obtained in [7]. 

Theorem 1.1 

a) Assume that 1 2 1A A  . Then system (1) has unique equailibrium solution  1 0,0E   which is 

globaly asymptotic stable. 

b) Assume that 1 2 1A A  . That system (1) has a unique equilibrium solution  1 0,0E   which is non-

hyperbolic and is a globaly attractor. 

 
Our goal is a to investigate the rate of convergence of solution of a system (1) that converges to the 

equilibrium  1 0,0E   in the regions parameters described in Theorem 1.1. The rate of convergence 

of solutions that convergence to an equilibrium has been obtanied for some two-dimensional system 

in [3], [4] and [8]. The following results gives the rate of convergence of solutions of a systema 
difference equations  

    1n nA B n     x x ,          (4) 

where nx  is a k-dimensional vectors, k kA C   is a constans matrix, and : k kB C Z  is a matrix 

function satisfying 

     0B n   when n ,         (5) 

where   denotes any matrix norm which is associated with the vector norm. 

Theorem 1. 2.  ([5])  Assume that condition (5) hold. If nx  is a solution of system (4), then either 

n x 0  for all large n or 

   lim n
n

n
  x           (6) 

exist and is equal to the moduls of one the eigenvalues of matrix A. 

Theorem 1. 3.  ([5])  Assume that condition (5) hold. If nx  is a solution of system (4), then either 

n x 0  for all large n or 
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x
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exist and is equal to the moduls of one the eigenvalues of matrix A. 

 

2.  RATE OF CONVERGENCE 
In this section we will determinate the rate of convergence of a solution that converges to the 

equilibrium  1 0,0E  , in case describe in Theorem 1.1. But, we will prove this generally theorem. 

Theorem 2.1  Assume that a solution   ,n nx y  of a system (1) converges to the equilibrium 

 ,E x y   and E is globally asymptotically stable. The error vector 
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of every solution n x 0  of (1) satisfies both of the following asymptotic relations: 
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where   i TJ E  is equal to the modulus of one the eigenvalues of the Jacobian matrix evaluated 

at the equilibrium  TJ E . 

Prof. First we will find a system satisfied by the error terms. The error terms are given
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That is 
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(10) 

Set: 1
n ne x x   and 2

n ne y y  . Then system (10) can be represented as 
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Taking the limits of , ,n n na b c  and nd , we obtain 
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where 0, 0, 0n n n       and 0n   when n . 

Now we have system of the form (3):  1n nA B n     e e . 

Thus, the limiting system of error terms can be written as: 
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The system is exactly linearized system of (1) evaluted at the equilibrium  ,E x y . Then Theorems 

1.2 and 1.3 imply the result. 

 

If we get    1 , 0,0E x y  , then we obtain the following result. 

Corollary 2.1  Assume that 1a   and 1b  . Then the equilibrium point    1 , 0,0E x y   is a 

globally asymptotically stable. The error vector of every solution n x 0  of (1) satisfies both of the 

following asymptotic relations: 
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where   i TJ E  is equal to the moduls of one the eigenvalues of the Jacobian matrix evaluted at 

the equilibrium  TJ E  i.e. 
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