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ABSTRACT 
In this paper we present a multiphase model which can be used to simulate phase change problems. 

The multiphase model resolves the interface between immiscible phases and belongs to the family of 

interface capturing methods. The resulting mathematical model was presented and was validated 
using the Stefan problem for which the exact solution exists. Qualitative tests on several simple one- 

and two-dimensional tests were also performed. 
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4. INTRODUCTION 
Multiphase flows with phase change are very common in everyday engineering practice. These flows 

are characterized with very intensive heat transfer and large mass transfer at locations where the 

phase-change takes place. Some interesting features of the flows with solid-liquid phase change are 
given in [1]. Here we consider flows where liquid evaporates at its boiling temperature. The phase-

change process is in this case very rapid and the physical properties of the liquid and its vapor are 

very different, what makes numerical simulations of such flows a very challenging task. 

 

5. MATHEMATICAL MODEL 

The mathematical model which describes the flow of several immiscible fluids is made of the 

following conservation equations [2]: 
• Momentum conservation 

 
• Total mass conservation 

 
• Phase mass conservation 

 
• Energy conservation 
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which are valid for an arbitrary solution domain of the volume V  bounded by the surface S, with 

surface vector dS pointing outwards. Here,  is the mixture density,  is velocity, T is the Cauchy 

stress tensor, fb is the momentum source, is the volume fraction of phase i, h is the specific 

enthalpy, q is the local heat flux and sh is the energy source. 

 

Boiling can take place only in the proximity of the liquid-vapor interface. The rate of 
evaporation/condensation is modeled as: 

 
where K is a scaling factor and  is the saturation or boiling temperature. In our present model K is 

calculated as 

 
where m is mass of liquid in the case of evaporation or mass of vapor in the case of condensation 

present in the control volume,  is specific heat, hlv is specific latent heat, and  is timescale of the 

phase change. The rate of evaporation results in additional source terms in the energy and phase 

volume-fraction transport equations. 
 

The mathematical model is solved using a cell-centered finite volume method as described in [3]. The 

method can be applied to numerical meshes made of polyhedral cells of an arbitrary shape. The 

transport equations are solved in a sequential manner using the SIMPLE algorithm.  
 

6. RESULTS 

The boiling model is validated using the Stefan problem [4], where we study 1D evaporation in a 
semi-infinity solution domain as shown in Fig.(1). Initially the liquid is at the saturation temperature. 

The heated wall is at the temperature T above the saturation temperature. The liquid evaporates as it 
heats up and the newly created vapor pushes the liquid to the right and the vapor column grows 

displacing the liquid out of the domain. Both phases are incompressible. 

 

 
 

Figure 1: Stefan problem. 

 

The temperature of the liquid phase is constant throughout the simulation, and equal to the initial 
saturation temperature Tsat, while the vapor temperature satisfies the following equation 

 
,  and  are thermal conductivity, density and specific heat of vapor. The position of the 

interface between the liquid and its vapor s(t) is a function of time. The boundary conditions for the 
portion of the solution domain occupied with vapor are 
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The speed vs at which the interface travels follows from the condition 

 
The position of the interface  is given by the following expression [4]: 

 
where  is the thermal diffusivity of the vapor: 

 
Parameter  is the solution of the transcendental equation 

 
where the error function is defined as 

 
In our simulation T is 25K, and material properties of vapor are kv = 0,0257 W/(m∙K), cpv = 1007 
J/(kg∙K) and hlv = 2,2∙10

6 
J/kg.  

The density ratio between liquid and its vapor has a significant impact on the stability of the solution 

procedure. Larger density ratios result in larger accelerations and velocities of the liquid. The liquid 

velocity is a function of the interface velocity and the ratio of liquid and vapor densities: 

 
The problem is especially pronounced in the beginning of a simulation. Large liquid acceleration 

produces large pressure gradients. Vapor is all the time at rest, what results in large velocity gradients 
across the vapor-liquid interface. 

 

Table 1: Different combinations of liquid and vapor density. 

     

1 1000 1000 

4 401 100 

16 160 10 

64 64 1 

 

Four different combinations of liquid and vapor densities were tested, as shown in Table 1. The 

computational domain was 40 mm long. It was discretized with 100 control volumes. Grid with 200 
points was tested and produced the same results, meaning that the solution obtained on the first grid 

was already grid independent. 

It was assumed in the Stefan problem that the interface is all the time in thermodynamic equilibrium, 

what implies that the boiling timescale parameter  is very small number. Very small values of 

could have a negative influence on the stability of the solution algorithm. Numerical experiments 

show that the value of does not have to be so small in order to get the right behavior of the system. 

The choice of the timescale parameter  is to some extent arbitrary and the results do not depend on 

its value across a wide interval. In our example  was set to 1 ms, what was also the size of the time 
step. 

 

Figure 2 shows the liquid-vapor interface position as a function of time. Symbols show the numerical 
results and solid lines show the exact solution. One can see that the differences between numerical 

and analytical results are very small. Even when we had 1000 times larger density for liquid phase, 

the model worked well. The same numerical grid was used for all ratios of liquid and vapor densities. 
Other quantities like temperature and velocity also matched the exact values. 
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Figure 2: Position of the liquid-vapor interface as a function of time. 
 

 

7. CONCLUSION 

A multiphase mode capable of tracking interfaces between immiscible fluids was extended such that it 
can model boiling processes. In this case the model keeps the interface between liquid and vapor 

sharp. The model was successfully validated using the classical Stefan’s problem, where we were able 

to reproduce the exact solution. At this stage, the model looks very promising and it will be applied to 
more complex flows with phase change. 
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