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ABSTRACT 
Wavelets are mathematical functions that cut up data into different frequency components, and then 
study each component with a resolution matched to its scale. They have advantages over traditional 
Fourier methods in analyzing physical situations where the signal contains discontinuities and sharp 
spikes. Wavelets were developed independently in the fields of mathematics, quantum physics, 
electrical engineering, and seismic geology. Interchanges between these fields during the last ten 
years have led to many new wavelet applications such as image compression, turbulence, human 
vision, radar, and earthquake prediction. This paper introduces wavelets to the interested technical 
person outside of the digital signal processing field. The history of wavelets is described by beginning 
with Fourier transform, short time Fourier transform, continuous wavelet transform, discrete wavelet 
transform and comparing wavelet transforms with Fourier transforms. Then, an application for 
comparing wavelet transforms is performed for sinusoidals with additional noise and CWT is 
investigated.  
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1. INTRODUCTION 
The fundamental idea behind wavelet is to analyze according to scale. Indeed, some researchers feel 
that using wavelets means adopting a whole new mind-set or perspective in processing data [1]. 
Wavelets are functions that satisfy certain mathematical requirements and are used in representing 
data or other functions. This idea is not new. Approximation using superposition of functions has 
existed since the early 1800s, when Joseph Fourier discovered that he could superpose sines and 
cosines to represent other functions. However, in wavelet analysis, the scale that used to look at data 
plays a special role. Wavelet algorithms process data at different scales or resolutions. If it is looked at 
a signal (or a function) through a large “window,” someone would notice gross features. Similarly, if 
it is looked at a signal through a small “window,” small features would be noticed. This makes 
wavelets interesting and useful. With wavelet analysis, we can use approximating functions that are 
contained neatly in finite domains. Wavelets are well-suited for approximating data with sharp 
discontinuities [2]. 
The wavelet analysis procedure is to adopt a wavelet prototype function, called an analyzing wavelet 
or mother wavelet. Temporal analysis is performed with a contracted, high-frequency version of the 
prototype wavelet, while frequency analysis is performed with a dilated, low-frequency version of the 
same wavelet. Because the original signal or function can be represented in terms of a wavelet 
expansion (using coefficients in a linear combination of the wavelet functions), data operations can be 
performed using just the corresponding into a function in the frequency domain. The signal can then 
be analyzed for its frequency wavelet coefficients [3]. 
 
2. WAVELET ANALYSIS 
Fourier transform gives the frequency information of the signal, but it doesn’t tell us when in time 
these frequency components exist. The information provided by the integral corresponds to all time 
instances because the integration is done for all time intervals. It means that no matter where in time 
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the frequency f appears, it will affect the result of the integration equally. This is why Fourier 
transform is not suitable for non-stationary signals [4].  
 
2.1. Short time fourier transform 
To overcome the weakness described above, short time Fourier transform (STFT) was developed. In 
STFT the signal is divided into small segments which can be assumed to be stationary. In STFT of 
signal multiplied by a window function within the Fourier integral. If the window length is infinite, it 
becomes the FT. In order to obtain the stationary, the window length must be short enough. The 
narrower windows affords better time resolution and better stationary, but at the cost poorer frequency 
resolution. One problem with STFT is that one can’t know what spectral components exist at what 
points of time. One can only know the time intervals in which certain band of frequencies exist [5]. 
 
2.2. Continuous wavelet transform 
The continuous wavelet transform evolved as an alternative approach to STFT to overcome the 
resolution problem [2]. The wavelet transform is similar to STFT in that the signal is multiplied by a 
function similar to windows function in STFT, but the transform is done separately for different 
segments of the signal. The main differences between STFT and the CWT are that in CWT the width 
of the window is changed as the transform is computed for every signal spectral component. The 
CWT is defined by, 
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2.3. Discrete wavelet transform 
The wavelet transform solves the dilemma of resolution to a certain extent. Multiresolution analysis 
(MRA) analyses the signal at different resolutions. MRA (also WT) is designed to give good time 
resolution or poor frequency resolution at high frequencies and good frequency resolution and poor 
time resolution at low frequencies. This approach makes sense especially when the signal at hand has 
high frequency components for short duration and low frequency components for long duration. 
The Discrete Wavelet Transform (DWT) is easier to implement than Continuous Wavelet Transform 
(CWT) [1, 6, 7, 8]. The CWT was computed by changing the scale of the analysis window, shifting 
the window in time, multiplying by the signal, and integrating over all times. In the discrete case, 
filters of different cut off frequencies are used to analyze the signal at different scales. The signal is 
passed through a series of high pass filters to analyze the high frequency components and it is passed 
through a series of low pass filters to analyze low frequencies [9]. The wavelet decomposition results 
of a signal are called DWT coefficients. 
 
3. WAVELET TRANSFORMS VERSUS FOURIER TRANSFORMS 
The most interesting dissimilarity between these two kinds of transforms is that individual wavelet 
functions are localized in space. Fourier sine and cosine functions are not. This localization feature, 
along with wavelets’ localization of frequency, makes many functions and operators using wavelets 
“sparse” when transformed into the wavelet domain. This sparseness, in turn, makes wavelets useful 
for a number of applications such as data compression, feature detection in images, and noise removal 
from time series.  
One way to see the time-frequency resolution differences between the two transforms is to look at the 
basis function coverage of the time-frequency plane. If the windowed Fourier transform is used, the 
window is simply a square wave. The square wave window truncates the sine or cosine function to fit 
a window of a particular width. Because a single window is used for all frequencies in the WFT, the 
resolution of the analysis is the same at all locations in the time-frequency plane. 
An advantage of wavelet transforms is that the windows vary. In order to isolate signal discontinuities, 
one would like to have some very short basis functions. At the same time, in order to obtain detailed 
frequency analysis, one would like to have some very long basis functions. A way to achieve this is to 
have short high-frequency basis functions and long low-frequency ones. This happy medium is 
exactly what you get with wavelet transforms. 
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One thing to remember is that wavelet transforms do not have a single set of basis functions like the 
Fourier transform, which utilizes just the sine and cosine functions. Instead, wavelet transforms have 
an infinite set of possible basis functions. Thus wavelet analysis provides immediate access to 
information that can be obscured by other time-frequency methods such as Fourier analysis. 
 
4. CWT OF SINUSOIDAL SIGNALS APPLICATION 
In the analysis investigated in this paper, the signal is composed of two sines with regard to the 
frequencies 50 and 150 Hz, respectively. Here maximum frequency is 150 Hz and since 3002Fs �	 F  
Hz, sampling frequency is chosen as 1000 Hz. Also an additional noise is added to the signal. By 
using several wavelet functions (db1,db3 etc), approximation and detail coefficients of six levels are 
obtained and the effects of these factors on the signal are investigated. Also scaling factor and the gain 
of the noise effects are examined. If we apply wavelet transform to obtain the signals for each 
frequencies without noise according to approximation and detail coefficients, Figure 1 is obtained. 
Figure 1 shows the obtained signals approximation coefficients at 6 levels. Here we loose additional 
noise after sixth level and at approximation coefficients from the first to fifth level we can see the 
effect of noise, easily. Here db3 function is used as wavelet function. Because by using db3, the most 
similar approximation coefficients to the signal are obtained for first level. According to the other db 
functions, the noise effect is canceled at earlier levels. For detail coefficients, at first level we can see 
the most effect of noise.   
If we change the gain of the noise 10 times for investigating the effect of noise to signal, more noisy 
signal  is obtained. From power spectrum density function, the noise effect can be seen at nearly all 
frequencies and when the scale factor of sinusoidal signal is changed by 4 with the 10 times gain of 
noise, Figure 2 is obtained.  
When the noise effect and the scale factor is changed, the sinusoidals can be seen sixth level by db3 
function, again. For investigating the effect of scale factor, Figure 3 is obtained. 
Figure 3 shows that small scale coefficients correspond to high frequency mean for the signal noise 
and high scale coefficients correspond to low frequencies mean sinusoidals for this signal. For 
example, in Figure 3(b) for small scale coefficient (i.e 0.25), absolute coefficients are seen very 
frequently. And as the scale value increases, absolute coefficients become sparse and periodic signals 
are seen. This situation corresponds to used sinusoidal signals for this application. 
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     Figure 1. Approximation and detail coefficients obtained for 6 levels, respectively. 
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Figure 2. Approximation and detail coefficients when the scale factor of sinusoidal signal is changed 

by 4 with the 10 times gain of noise. 
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Figure 3. (a) Analyzed signal (b) Analyzed signal and continuous transform absolute coefficients. 

 
5. CONCLUSIONS 
Fourier transform shows what frequencies exist in the signal and tells how much of each frequency 
exists in a signal. Also the time and frequency information can not be seen at the same time.  
STFT provides some information about both when and at what frequencies a signal event occurs. 
Precision is determined by the size of the window. 
Wavelet analysis is a form of  ‘Multiresolution Analysis’, which means that wavelet coefficients for a 
certain function contain both frequency and time domain information. 
The continuous wavelet transform was developed as an alternative approach to the short time Fourier 
transform to overcome the resolution problem. 
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