Journal of Trends in the Development of Machinery and Associated Technology Vol. 20, No. 1, 2016, ISSN 2303-4009 (online), p.p. 33-36

MULTI-RESPONSE OPTIMIZATION OF BALL-END MILLING PARAMETERS USING THE TAGUCHI-BASED GREY RELATIONAL ANALYSIS

Milenko Sekulić, Vlastimir Pejić, Marin Gostimirović University of Novi Sad, Faculty of Technical Sciences Trg Dositeja Obradovića 6, Novi Sad Serbia Zoran Jurković
University of Rijeka, Faculty of
Engineering
Vukovarska 58, Rijeka
Croatia

ABSTRACT

This paper presents an approach for optimization of machining parameters with multi-response outputs using design of experiment in ball-end milling. During the ball-end milling of hardened steel, process performance indicators such as surface roughness, material removal rate and resultant cutting force were measured. The process parameters which are spindle speed, feed per tooth, axial dept of cut and radial depth of cut were simultaneously optimized by the Taguchi-based Grey relational analysis. Experiments are designed and conducted based on Taguchi's L_{25} orthogonal array design.

Based on grey relational grade value, optimum levels of parameters have been identified by using response table and response graph and the significant contributions of controlling parameters are estimated using analysis of variances (ANOVA). Confirmation test is conducted for the optimal machining parameters to validate the test result.

Keywords: ball-milling, multi-response optimization, Taguchi-based Grey relational analysis

1. INTRODUCTION

In this study, the effect of ball-end milling parameters on the resultant cutting force, the surface roughness and the material removal rate (MRR) are reported using the Taguchi-based Grey relational analysis. This approach can solve multi-response optimization problem simultaneously. In this study the Taguchi $L_{25}(5^6)$ orthogonal array was applied to plan the experiments on ball-end milling process. Four controlling factors including spindle speed n, axial depth of cut a_p , radial depth of cut a_e and feed per tooth f_z with five levels for each factor were selected.

The Grey relational analysis is then applied to examine how the cutting factors influence the resultant cutting force F_R , the surface roughness R_a and the material removal rate Q. An optimal parameter combination was then obtained. Additionally, an analysis of variance (ANOVA) was also utilized to examine the most significant factors for the F_R , R_a and Q in the ball-end milling process.

2. TAGUCHI-BASED GREY RELATIONAL ANALYSIS

The integrated the Taguchi-based Grey relational analysis combines the algorithm of Taguchi method and Grey relational analysis to determine the optimum process parameters for multiple responses.

This approach converts a multiple-response process optimization problem into a single response optimization situation. The single objective function is the overall grey relational grade. Higher grey relational grade means that the corresponding parameter combination is closer to the optimal. The optimal parametric combination is then evaluated considering the overall grey relational grade by using Taguchi method. The highest grey relational grade is the rank of 1. The equations needed to apply Taguchi method and Grey relational analysis are given in Table 2.

Table 2. Equations for Taguchi method and Grey relational analysis

able 2. Equations for Lagueri method and Grey relational analysis						
Taguchi method	<u> </u>					
		The normalized data processing for F_R and R_a corresponding to "smaller-thebetter" (S-T-B) criterion can be expressed as:	The normalized data processing for <i>Q</i> corresponding to "larger-thebetter" (L-T-B) criterion can be expressed as:			
	Grey relational generation	$x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)}$	$x_i(k) = \frac{y_i(k) - \min y_i(k)}{\max y_i(k) - \min y_i(k)}$			
The S/N ratio based on the "larger-the-better" (L-T-B) criterion for overall grey relational grade was calculated using equation:		i=1,2n, n is the number of experimental runs in Taguchi orthogonal array L_{25} (n=25); k=1,2m, m is the number of responses, in the present work the resultant force, the surface roughness and the material removal rate are selected, then m=3; $x_i(k)$ is the value after the grey relational generation; Min $y_i(k)$ is the smallest value of $y_i(k)$ for the k^{th} response and max $y_i(k)$ is the largest value of $y_i(k)$ for the k^{th} response				
		$\xi_i(k) = \frac{\Delta_{\min} + \psi \cdot \Delta_{\max}}{\Delta_{0i}(k) + \psi \cdot \Delta_{\max}}, \ 0 \le \xi_i(k) \le 1,$				
$S_{N} = n = -10\log\left(\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}\right)$	Grey relational coefficient	$\Delta_{0i}(k) = x_0(k) - x_i(k) $ is difference of the absolute value between $x_0(k)$ and				
$n = y_i^2$		$x_i(k)$; Δ_{\min} and Δ_{\max} are respectively the minimum and maximum values of				
		the absolute differences; ψ is the distinguishing coefficient, $0 \le \psi \le 1$				
		$\psi = 0.333$ for F_R , $\psi = 0.556$ for R_a and $\psi = 0.111$ for Q using AHP				
		method (In this case importance has been given to roughness value [5].)				
	Grey relational grade	$\gamma_i = \frac{1}{m} \sum_{k=1}^n \xi_i(k)$				
	Estimated Grey relational	$\hat{\gamma} = \gamma_m + \sum_{i=1}^q (\gamma_i - \gamma_m), \gamma_m \text{ -the total mean Grey relational grade; } \gamma_i -the mean Grey relational grade at the optimal level; q-the number of the main design$				
	Taguchi method The S/N ratio based on the "larger-the-better" (L-T-B) criterion for overall grey relational grade was calculated using equation:	Taguchi method Grey relational generation The S/N ratio based on the "larger-the-better" (L-T-B) criterion for overall grey relational grade was calculated using equation: $S/N = \eta = -10 \log \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2} \right) \begin{array}{c} \text{Grey relational coefficient} \\ \text{Grey relational grade} \end{array}$ Estimated Grey	Taguchi method Grey relational analy The normalized data processing for F_R and R_a corresponding to "smaller-the-better" (S-T-B) criterion can be expressed as: $x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)}$ i=1,2n, n is the number of response and the mater $x_i(k)$ is the value after the grey relational value of $y_i(k)$ for the k^{th} response and max k^{th} response $\begin{cases} S_N = \eta = -10 \log \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2} \right) \end{cases}$ Grey relational grade was calculated using equation: $\begin{cases} S_N = \eta = -10 \log \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2} \right) \end{cases}$ Grey relational coefficient Grey relational grade $\begin{cases} Grey \\ i=1,2n, \text{ n is the number of response and the mater } x_i(k) \text{ is the value after the grey relational value of } y_i(k) \text{ for the } k^{th} \text{ response and max } k^{th} \text{ response} \end{cases}$ $\begin{cases} S_N = \eta = -10 \log \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2} \right) \end{cases}$ Grey relational coefficient Grey relational grade Fractional maly $\begin{cases} x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\max y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\max y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - \min y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - y_i(k)} \end{cases}$ $\begin{cases} x_i(k) = \frac{\min y_i(k) - y_i(k)}{\min y_i(k) - y_i(k)} $			

3. EXPERIMENTAL PROCEDURE

The experimental work was carried out at the company "ELMETAL" doo in Senta (Serbia). The experiments were conducted on vertical machining centre type "HAAS VF-3YT" in dry condition, using a carbide coated (TiAlN-T3) ball-end mill with Ø6 mm diameter ("EMUGE FRANKEN" type 1877A). All experiments were carried out using hardened steel X210CR12 (Č4150) with hardness 58 HRC by orthogonal arrays with five levels (coded by:1,2,3,4 and 5), Table 1.

Table 1. Machining parameters and their levels

Symbol	Parameters	Levels							
Symbol	Farameters	1	2	3	4	5			
A	Spindle speed, n (min ⁻¹)	3981	4777	5573	6369	7169			
В	Feed per tooth, f _z (mm/tooth)	0,018	0,024	0,030	0,036	0,042			
С	Axial depth of cut, a _p (mm)	0,04	0,08	0,12	0,16	0,20			
D	Radial depth of cut, a _e (mm)	0,20	0,40	0,60	0,80	1,00			

During the experiments, orthogonal cutting forces were measured using Kistler dynamometer and sampled using a PC based data acquisition system with LabVIEW software. The resultant cutting force was calculated using measured value of orthogonal cutting forces F_x , F_y and F_z [5]:

$$F_R = \sqrt{F_x^2 + F_y^2 + F_z^2} \tag{1}$$

Roughness measurement has been done using mobile roughness measurement device "MarSurf PS1". Material removal rate was calculated by equation (2) [5]. Equation (2) permits to calculate the theoretical material removal rate Q given a certain radial depth of cut a_e , a certain axial depth of cut a_p , a certain cutting tool radius r, a certain feed per tooth f_z , spindle speed n and number of teeth z:

$$Q = f_z \cdot z \cdot n \cdot \left[a_p \cdot a_e - a_e \cdot r + \frac{r^2 \cdot \pi}{180} \arcsin\left(\frac{a_e}{2r}\right) + \frac{1}{2} \cdot a_e^2 \cdot \sqrt{r^2 - \left(\frac{a_e}{2}\right)^2} \right]$$
 (2)

4. RESULTS AND DISCUSSION

Experimental results, together with normalized values of response, values of grey relational coefficient and values of grey relational grade are given in Table 2.

Table 2. Grey relational coefficient, grey relational grade and corresponding S/N ratios

New York	Table 2. Grey relational coefficient, grey relational																
A B C D F _R R ₀ Q (mm)/min) F _R S _{77.8} R ₀ Q Cmde Rank S _{77.8} R ₀ R ₀ R ₀ Rank Rank	N ⁽		Parai	nete	rs	Measured data of responses		responses			coefficient			Grey relational grade γ_i			
2 1 2 2 2 5.07.2 0.454 5.94 0.74 0.95 0.08 0.39 0.92 0.24 0.53 6 -5 3 1 3 3 3 67.29 1.587 16.48 0.55 0.73 0.25 0.26 0.67 0.28 0.41 17 -7 4 1 4 4 4 81.76 3.375 34.64 0.38 0.37 0.55 0.21 0.46 0.40 0.34 20 -9 5 1 5 5 103.52 5.041 62.22 0.12 0.04 1.00 0.16 0.36 1.00 0.55 7 -5 6 2 1 2 3 4 7.761 3.235 20.34 0.42 0.40 0.32 0.22 0.47 0.30 0.33 22 9 8 2 3 4 5 9.05 5.259			В	С	D		-				-	F_R	R_a	Q	Grade	Rank	S/N ratio
3 1 3 3 3 67.29 1.587 16.48 0.55 0.73 0.25 0.26 0.67 0.28 0.41 17 -7 4 1 4 4 4 81.76 3.375 34.64 0.38 0.37 0.55 0.21 0.46 0.40 0.34 20 -9 5 1 5 5 5 103.52 5.041 62.22 0.12 0.04 1.00 0.16 0.36 1.00 0.55 7 -5 6 2 1 2 3 61.21 1.402 7.74 0.62 0.77 0.11 0.30 0.70 0.25 0.43 15 -7 7 2 2 3 4 77.61 3.235 20.34 0.42 0.40 0.32 0.22 0.47 0.30 0.33 22 -9 8 2 3 4 5 97.05 5.259 <t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>28.66</td><td>0.303</td><td>1.13</td><td>1.00</td><td>0.98</td><td>0.00</td><td>1.00</td><td>0.97</td><td>0.23</td><td>0.69</td><td>1</td><td>-3.21</td></t<>	1	1	1	1	1	28.66	0.303	1.13	1.00	0.98	0.00	1.00	0.97	0.23	0.69	1	-3.21
4 1 4 4 4 81.76 3.375 34.64 0.38 0.37 0.55 0.21 0.46 0.40 0.34 20 -9 5 1 5 5 5 103.52 5.041 62.22 0.12 0.04 1.00 0.16 0.36 1.00 0.55 7 -5 6 2 1 2 3 61.21 1.402 7.74 0.62 0.77 0.11 0.30 0.70 0.25 0.43 15 -7 7 2 2 3 4 77.61 3.235 20.34 0.42 0.40 0.32 0.22 0.47 0.30 0.33 22 -9 8 2 3 4 5 97.05 5.259 41.86 0.20 0.00 0.67 0.17 0.35 0.47 0.30 23 -16 10 2 5 1 2 46.31 0.501	2	1	2	2	2	50.72	0.454	5.94	0.74	0.95	0.08	0.39	0.92	0.24	0.53	6	-5.49
5 1 5 5 5 103.52 5.041 62.22 0.12 0.04 1.00 0.16 0.36 1.00 0.55 7 -5 6 2 1 2 3 61.21 1.402 7.74 0.62 0.77 0.11 0.30 0.70 0.25 0.43 15 -7 7 2 2 3 4 77.61 3.235 20.34 0.42 0.40 0.32 0.22 0.47 0.30 0.33 22 -9 8 2 3 4 5 97.05 5.259 41.86 0.20 0.00 0.67 0.17 0.35 0.47 0.30 23 -10 9 2 4 5 1 98.34 0.322 13.72 0.18 0.98 0.21 0.17 0.97 0.27 0.46 11 -6 10 2 5 1 2 46.31 0.501	3	1	3	3	3	67.29	1.587	16.48	0.55	0.73	0.25	0.26	0.67	0.28	0.41	17	-7.78
6 2 1 2 3 61.21 1.402 7.74 0.62 0.77 0.11 0.30 0.70 0.25 0.43 15 -7 7 2 2 3 4 77.61 3.235 20.34 0.42 0.40 0.32 0.22 0.47 0.30 0.33 22 -9 8 2 3 4 5 97.05 5.259 41.86 0.20 0.00 0.67 0.17 0.35 0.47 0.30 23 -16 9 2 4 5 1 98.34 0.322 13.72 0.18 0.98 0.21 0.17 0.97 0.27 0.46 11 -6 10 2 5 1 2 46.31 0.501 6.06 0.79 0.95 0.08 0.44 0.91 0.24 0.54 5 -5 11 3 1 3 5 2 16.55 0.362 <	4	1	4	4	4	81.76	3.375	34.64	0.38	0.37	0.55	0.21	0.46	0.40	0.34	20	-9.41
7 2 2 3 4 77.61 3.235 20.34 0.42 0.40 0.32 0.22 0.47 0.30 0.33 22 -9 8 2 3 4 5 97.05 5.259 41.86 0.20 0.00 0.67 0.17 0.35 0.47 0.30 23 -16 9 2 4 5 1 98.34 0.322 13.72 0.18 0.98 0.21 0.17 0.97 0.27 0.46 11 -6 10 2 5 1 2 46.31 0.501 6.06 0.79 0.95 0.08 0.44 0.91 0.24 0.54 5 -5 11 3 1 3 5 91.74 4.719 21.28 0.26 0.11 0.33 0.18 0.38 0.31 0.28 25 -1 12 3 2 4 1 86.55 0.362	5	1	5	5	5	103.52	5.041	62.22	0.12	0.04	1.00	0.16	0.36	1.00	0.55	7	-5.24
8 2 3 4 5 97.05 5.259 41.86 0.20 0.00 0.67 0.17 0.35 0.47 0.30 23 -10 9 2 4 5 1 98.34 0.322 13.72 0.18 0.98 0.21 0.17 0.97 0.27 0.46 11 -6 10 2 5 1 2 46.31 0.501 6.06 0.79 0.95 0.08 0.44 0.91 0.24 0.54 5 -5 11 3 5 91.74 4.719 21.28 0.26 0.11 0.33 0.18 0.38 0.31 0.28 25 -1 12 3 2 4 1 86.55 0.362 8.53 0.32 0.97 0.12 0.19 0.95 0.25 0.46 12 -6 13 3 5 2 105.75 0.523 26.45 0.09 0.94 </td <td>6</td> <td>2</td> <td>1</td> <td>2</td> <td>3</td> <td>61.21</td> <td>1.402</td> <td>7.74</td> <td>0.62</td> <td>0.77</td> <td>0.11</td> <td>0.30</td> <td>0.70</td> <td>0.25</td> <td>0.43</td> <td>15</td> <td>-7.40</td>	6	2	1	2	3	61.21	1.402	7.74	0.62	0.77	0.11	0.30	0.70	0.25	0.43	15	-7.40
9 2 4 5 1 98.34 0.322 13.72 0.18 0.98 0.21 0.17 0.97 0.27 0.46 11 -6 10 2 5 1 2 46.31 0.501 6.06 0.79 0.95 0.08 0.44 0.91 0.24 0.54 5 -5 11 3 1 3 5 91.74 4.719 21.28 0.26 0.11 0.33 0.18 0.38 0.31 0.28 25 -1 12 3 2 4 1 86.55 0.362 8.53 0.32 0.97 0.12 0.19 0.95 0.25 0.46 12 -6 13 3 5 2 105.75 0.523 26.45 0.09 0.94 0.41 0.15 0.90 0.34 0.44 13 -7 14 3 4 1 3 4.19 1.328 8.42	7	2	2	3	4	77.61	3.235	20.34	0.42	0.40	0.32	0.22	0.47	0.30	0.33	22	-9.65
10 2 5 1 2 46.31 0.501 6.06 0.79 0.95 0.08 0.44 0.91 0.24 0.54 5 -5 11 3 1 3 5 91.74 4.719 21.28 0.26 0.11 0.33 0.18 0.38 0.31 0.28 25 -1 12 3 2 4 1 86.55 0.362 8.53 0.32 0.97 0.12 0.19 0.95 0.25 0.46 12 -6 13 3 5 2 105.75 0.523 26.45 0.09 0.94 0.41 0.15 0.90 0.34 0.44 13 -7 14 3 4 1 3 41.19 1.328 8.42 0.85 0.78 0.12 0.53 0.71 0.25 0.51 9 -5 15 3 5 2 4 76.84 3.640 26.62 0.43 0.32 0.42 0.22 0.44 0.34 0.33 21 -9 16 4 1 4 2 82.15 0.514 14.47 0.37 0.94 0.22 0.21 0.90 0.28 0.46 14 -6	8	2	3	4	5	97.05	5.259	41.86	0.20	0.00	0.67	0.17	0.35	0.47	0.30	23	-10.46
11 3 1 3 5 91.74 4.719 21.28 0.26 0.11 0.33 0.18 0.38 0.31 0.28 25 -1 12 3 2 4 1 86.55 0.362 8.53 0.32 0.97 0.12 0.19 0.95 0.25 0.46 12 -6 13 3 5 2 105.75 0.523 26.45 0.09 0.94 0.41 0.15 0.90 0.34 0.44 13 -7 14 3 4 1 3 41.19 1.328 8.42 0.85 0.78 0.12 0.53 0.71 0.25 0.51 9 -5 15 3 5 2 4 76.84 3.640 26.62 0.43 0.32 0.42 0.22 0.44 0.34 0.33 21 -9 16 4 1 4 2 82.15 0.514 14.47	9	2	4	5	1	98.34	0.322	13.72	0.18	0.98	0.21	0.17	0.97	0.27	0.46	11	-6.76
12 3 2 4 1 86.55 0.362 8.53 0.32 0.97 0.12 0.19 0.95 0.25 0.46 12 -6 13 3 5 2 105.75 0.523 26.45 0.09 0.94 0.41 0.15 0.90 0.34 0.44 13 -7 14 3 4 1 3 41.19 1.328 8.42 0.85 0.78 0.12 0.53 0.71 0.25 0.51 9 -5 15 3 5 2 4 76.84 3.640 26.62 0.43 0.32 0.42 0.22 0.44 0.34 0.33 21 -9 16 4 1 4 2 82.15 0.514 14.47 0.37 0.94 0.22 0.21 0.90 0.28 0.46 14 -6 17 4 2 5 3 94.40 1.602 35.77	10	2	5	1	2	46.31	0.501	6.06	0.79	0.95	0.08	0.44	0.91	0.24	0.54	5	-5.28
13 3 5 2 105.75 0.523 26.45 0.09 0.94 0.41 0.15 0.90 0.34 0.44 13 -7 14 3 4 1 3 41.19 1.328 8.42 0.85 0.78 0.12 0.53 0.71 0.25 0.51 9 -5 15 3 5 2 4 76.84 3.640 26.62 0.43 0.32 0.42 0.22 0.44 0.34 0.33 21 -9 16 4 1 4 2 82.15 0.514 14.47 0.37 0.94 0.22 0.21 0.90 0.28 0.46 14 -6 17 4 2 5 3 94.40 1.602 35.77 0.23 0.57 0.17 0.66 0.41 0.39 16 -8 18 4 3 1 4 29.58 1.697 9.50 0.99	11	3	1	3	5	91.74	4.719	21.28	0.26	0.11	0.33	0.18	0.38	0.31	0.28	25	-11.10
14 3 4 1 3 41.19 1.328 8.42 0.85 0.78 0.12 0.53 0.71 0.25 0.51 9 -5 15 3 5 2 4 76.84 3.640 26.62 0.43 0.32 0.42 0.22 0.44 0.34 0.33 21 -9 16 4 1 4 2 82.15 0.514 14.47 0.37 0.94 0.22 0.21 0.90 0.28 0.46 14 -6 17 4 2 5 3 94.40 1.602 35.77 0.23 0.73 0.57 0.17 0.66 0.41 0.39 16 -8 18 4 3 1 4 29.58 1.697 9.50 0.99 0.71 0.14 0.94 0.65 0.26 0.58 2 -4 19 4 4 2 5 74.48 4.851 30.29 0.46 0.08 0.48 0.23 0.37 0.36 0.31 24 -10 20 4 5 3 1 73.52 0.463 12.78 0.47 0.95 0.19 0.24 0.92 0.27 0.48 10 -6 21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19 -9 22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18 -7 23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3 -4 24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	12	3	2	4	1	86.55	0.362	8.53	0.32	0.97	0.12	0.19	0.95	0.25	0.46	12	-6.66
15 3 5 2 4 76.84 3.640 26.62 0.43 0.32 0.42 0.22 0.44 0.34 0.33 21 -9 16 4 1 4 2 82.15 0.514 14.47 0.37 0.94 0.22 0.21 0.90 0.28 0.46 14 -6 17 4 2 5 3 94.40 1.602 35.77 0.23 0.73 0.57 0.17 0.66 0.41 0.39 16 -8 18 4 3 1 4 29.58 1.697 9.50 0.99 0.71 0.14 0.94 0.65 0.26 0.58 2 -4 19 4 4 2 5 74.48 4.851 30.29 0.46 0.08 0.48 0.23 0.37 0.36 0.31 24 -10 20 4 5 3 1 73.52 0.463	13	3	3	5	2	105.75	0.523	26.45	0.09	0.94	0.41	0.15	0.90	0.34	0.44	13	-7.05
16 4 1 4 2 82.15 0.514 14.47 0.37 0.94 0.22 0.21 0.90 0.28 0.46 14 -6 17 4 2 5 3 94.40 1.602 35.77 0.23 0.73 0.57 0.17 0.66 0.41 0.39 16 -8 18 4 3 1 4 29.58 1.697 9.50 0.99 0.71 0.14 0.94 0.65 0.26 0.58 2 -4 19 4 4 2 5 74.48 4.851 30.29 0.46 0.08 0.48 0.23 0.37 0.36 0.31 24 -10 20 4 5 3 1 73.52 0.463 12.78 0.47 0.95 0.19 0.24 0.92 0.27 0.48 10 -6 21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19	14	3	4	1	3	41.19	1.328	8.42	0.85	0.78	0.12	0.53	0.71	0.25	0.51	9	-5.89
17 4 2 5 3 94.40 1.602 35.77 0.23 0.73 0.57 0.17 0.66 0.41 0.39 16 -8 18 4 3 1 4 29.58 1.697 9.50 0.99 0.71 0.14 0.94 0.65 0.26 0.58 2 -4 19 4 4 2 5 74.48 4.851 30.29 0.46 0.08 0.48 0.23 0.37 0.36 0.31 24 -10 20 4 5 3 1 73.52 0.463 12.78 0.47 0.95 0.19 0.24 0.92 0.27 0.48 10 -6 21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19 -9 22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18	15	3	5	2	4	76.84	3.640	26.62	0.43	0.32	0.42	0.22	0.44	0.34	0.33	21	-9.72
18 4 3 1 4 29.58 1.697 9.50 0.99 0.71 0.14 0.94 0.65 0.26 0.58 2 -4 19 4 4 2 5 74.48 4.851 30.29 0.46 0.08 0.48 0.23 0.37 0.36 0.31 24 -10 20 4 5 3 1 73.52 0.463 12.78 0.47 0.95 0.19 0.24 0.92 0.27 0.48 10 -6 21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19 -9 22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18 -7 23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3	16	4	1	4	2	82.15	0.514	14.47	0.37	0.94	0.22	0.21	0.90	0.28	0.46	14	-6.76
19 4 4 2 5 74.48 4.851 30.29 0.46 0.08 0.48 0.23 0.37 0.36 0.31 24 -10 20 4 5 3 1 73.52 0.463 12.78 0.47 0.95 0.19 0.24 0.92 0.27 0.48 10 -6 21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19 -9 22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18 -7 23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3 -4 24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	17	4	2	5	3	94.40	1.602	35.77	0.23	0.73	0.57	0.17	0.66	0.41	0.39	16	-8.14
20 4 5 3 1 73.52 0.463 12.78 0.47 0.95 0.19 0.24 0.92 0.27 0.48 10 -6 21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19 -9 22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18 -7 23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3 -4 24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	18	4	3	1	4	29.58	1.697	9.50	0.99	0.71	0.14	0.94	0.65	0.26	0.58	2	-4.74
21 5 1 5 4 93.17 3.405 39.43 0.24 0.37 0.63 0.18 0.46 0.44 0.33 19 -9 22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18 -7 23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3 -4 24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	19	4	4	2	5	74.48	4.851	30.29	0.46	0.08	0.48	0.23	0.37	0.36	0.31	24	-10.14
22 5 2 1 5 43.98 3.252 8.96 0.82 0.40 0.13 0.48 0.47 0.25 0.41 18 -7 23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3 -4 24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	20	4	5	3	1	73.52	0.463	12.78	0.47	0.95	0.19	0.24	0.92	0.27	0.48	10	-6.44
23 5 3 2 1 48.60 0.225 6.88 0.77 1.00 0.09 0.41 1.00 0.25 0.57 3 -4 24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	21	5	1	5	4	93.17	3.405	39.43	0.24	0.37	0.63	0.18	0.46	0.44	0.33	19	-9.52
24 5 4 3 2 81.67 0.309 24.31 0.38 0.98 0.38 0.21 0.97 0.32 0.49 8 -6	22	5	2	1	5	43.98	3.252	8.96	0.82	0.40	0.13	0.48	0.47	0.25	0.41	18	-7.66
	23	5	3	2	1	48.60	0.225	6.88	0.77	1.00	0.09	0.41	1.00	0.25	0.57	3	-4.95
25 5 5 4 3 113 74 1050 55 97 0.00 0.84 0.00 0.14 0.77 0.74 0.51 4 5	24	5	4	3	2	81.67	0.309	24.31	0.38	0.98	0.38	0.21	0.97	0.32	0.49	8	-6.19
25 5 5 4 5 115.74 1.050 55.97 0.00 0.04 0.90 0.14 0.77 0.74 0.51 4 -5	25	5	5	4	3	113.74	1.050	55.97	0.00	0.84	0.90	0.14	0.77	0.74	0.51	4	-5.78

The mean of the grey relational grade for each level of the parameter is summarized and shown in Table 3. In addition, the total mean of the grey relational grade for the 25 experiments is also calculated and listed in Table 3. Figure 1 shows the grey relational grade graph for the levels of the processing parameters. Basically, the larger the grey relational grade, the better is the multiple performance characteristics. The results of ANOVA for the grey grade values are represented in Table 4. The results of the ANOVA indicate that the percentage contribution of spindle speed n, feed per tooth f_z , axial depth of cut a_p and radial depth of cut a_e influencing the multiple performance characteristics were 12.65%, 4.93%, 27.18% and 37.99% respectively. Radial depth of cut was found to be the major factor affecting the resultant cutting force, the surface roughness and the material

Table 3. Response table for the mean grey relational grade

3.70				x- n (ta)	- Yı				
N^0	Factors				Level			Max- Min Delta)	Rank
			1	2	3	4	5	Γ -	, ,
1	Spindle speed n (min ⁻¹)	A	0.50	0.41	0.40	0.44	0.46	0.10	3
2	Feed per tooth f _z (mm/z)	В	0.44	0.43	0.46	0.42	0.48	0.06	4
3	Axial depth of cut a _p (mm)	С	0.55	0.43	0.40	0.42	0.44	0.15	2
4	Radial depth of cut a _e (mm)	D	0.53	0.49	0.45	0.38	0.37	0.16	1

Total mean value of the grey relational grade = 0.45; *optimal level

removal rate. After evaluating the optimal parameter settings, the next step is to predict and verify the enhancement of quality characteristics using the optimal parametric combination. Table 5 indicates the comparison of the predicted resultant cutting force, surface roughness and material removal rate with that of actual by using the optimal ball-end milling conditions A1B5C1D1. agreement between the actual and predicted results was obtained. Also, improvement in overall Grey relational grade was found to be as

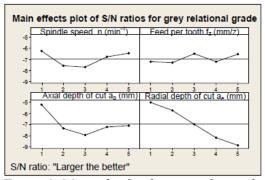


Figure 1. Mean plot for the grey relational grade

Table 4. Results of ANOVA

Factor	Degree of freedom	Sum of squares	Variance	F-ratio	Percent contribution
	DF	S	V	F	P(%)
A	4	0.032	0.013	1.47	12.65
В	4	0.013	0.008	0.57	4.93
С	4	0.070	0.003	3.15	27.18
D	4	0.097	0.017	4.40	37.99
Other errors	8	0.044	0.024		17.25
Total	24	0.257			100

5. CONCLUSION

This study has concentrated on the application of Taguchi method coupled with Grey relation analysis for solving multi criteria optimization

Table 5. Results of confirmation test

analysis for solving multi criteria optimization problem in the field of ball-end milling process. Effectiveness of this method was verified by test experiment. The response characteristics of the ball-end milling operations, such as the resultant cutting force, the surface roughness and the material removal rate are greatly enhanced by using this method.

	Initial factor	Optimal process condition		
	settings	Prediction Experime		
Factor levels	A1B3C3D3	A1B5C1D1	A1B5C1D1	
$F_{R}(N)$	67.29	-	42.42	
R _a (µm)	1.587	-	0.278	
Q (mm ³ /min)	16.48	-	2.64	
S/N ratio	-7.78	-1.91	-3.58	
Grey relational grade	0.41	0.73	0.66	

6. REFERENCES

- [1] Mukherjee I., Ray P. K.: A review of optimization techniques in metal cutting processes, Computer and Industrial Engineering, Vol. 50, pp. 15-34., 2006.
- [2] Deng J.: Introduction to grey system, Journal of Grey System, Vol. 1(1), pp. 1–24, 1989.
- [3] Sadasiva Rao T., Rajesh V., Venu Gopal A.: Taguchi based Grey Relational Analysis to Optimize Face Milling Process with Multiple Performance Characteristics, ICTIME'2012, Dubai, pp. 166-170, 2012.
- [4] Puh F., Jurković Z., Cukor G., Perinić M., Sekulić M.: Multi-response optimization of turning parameters using the Grey-based Taguchi method, TMT2015, Barcelona, pp. 13-16, 2015.
- [5] Pejić V.: Modeling and optimization in the ball-end milling process, PhD dissertation, University of Novi Sad, Faculty of Technical Sciences, Novi Sad, 2016.

ACKNOWLEDGEMENTS

The paper is the result of the research within the project TR 35015 financed by the Ministry of Education, Science and Technological Development of Republic of Serbia and CEEPUS project.