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ABSTRACT  
A technique for damage identification using bending frequencies of beams is presented in the paper. 
The numerical values of natural frequencies are calculated using the beam FEA model and then 
regression relations were established between the first four natural frequencies and damage 
parameters (location and depth). Based on these regression relations, the estimation of damage 
location and depth were estimated by experimentally obtained frequency values through minimizing 
the functional using the software MATHEMATICA 6.0. The proposed damage identification technique 
was used to estimate damage parameters in 28 damage scenarios (7 locations and 4 damage depths). 
The results of identification are good and promising. 
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1. INTRODUCTION  
Modal parameters (natural frequencies, mode shapes and modal damping) of a structure are directly 
related to its physical characteristics (mass, stiffness and damping characteristics). Therefore, damage 
in the structure should be detected and identified by measuring the changes of the structure vibration 
characteristics. This is the base for vibration based non-destructive structural health monitoring which 
was investigated during the past few decades. The idea of using modal parameters for damage 
identification appeared in 1940s and great efforts are dedicated to develop more efficient 
identification techniques. Different methods that use changes in modal parameters can be found in 
literature, for instance in [1, 2, 3].  
Here presented damage identification technique uses changes in natural frequencies and this paper is 
aimed to show and estimate the efficacy of the proposed technique. 
2. AN OVERVIEW OF DAMAGE IDENTIFICATION TECHNIQUE 
Modal parameters (natural frequencies, mode shapes and modal damping) of a structure are directly 
related to its physical characteristics (mass, stiffness and damping characteristics). Therefore, damage 
in the structure should be detected and identified by measuring the changes of the structure's vibration 
characteristics. For the proposed identification technique, several steps are necessary to perform. 
Firstly, the numerical model of the real beam structure should be established in some of the available 
software packages, mostly based on finite elements. Then, a numerical analysis of undamaged and 
different scenarios of damaged beam model should be performed to obtain several bending frequency 
values. To relate frequencies and damage parameters (location and depth), a nonlinear regression 
analysis in some statistical software should be done to obtain the necessary regression relations. At 
the beginning, the experimental measurement of bending frequencies for the real intact beam structure 
should be done. From time to time measurements should be repeated to obtain current values of 
frequencies. If in the meantime a single damage occurred, new values of frequencies together with 
those previously obtained should be put in the adopted functional and the damage parameters would 
be obtained as those giving the minimum value to the adopted functional. 
 
3. DAMAGE IDENTIFICATION TECHNIQUE IN DETAILS 
3.1. Numerical modal analysis of a beam structure 
A simple case of a free-free beam was modeled in software I-DEAS Master Modeler 9. The beam 
characteristics were: beam length LB=400 mm, height H=8.16 mm, width B=8.12 mm, modulus of 
elasticity E=2.068x1011 Pa, mass density �=7820 kg/m3 and Poisson’s coefficient �=0.29.  
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Figure 1. FEM model of damaged beam Figure 2. The beam sample in free-free state 

The damage was shaped as an open notch of 1 mm width perpendicular to the beam axis, Figure 1. 
The location of the damage LD and its depth d were varied and natural bending frequencies fi

NU and 
fi

ND, i=1,2,3,4, was numerically obtained. Here, the index NU means numerical value for undamaged 
beam and ND for damaged beam. More on this topic can be found in [4]. 
 
 
 
 
 
 
 
 
 
3.2. Experimental modal analysis of beam samples  
To estimate the strength of the proposed identification technique, experimental modal analysis of 
seven beam samples were performed. The instruments used were: PC, frequency analyzer HP 3567A, 
interface HP82335A, accelerometers B&K 4394 and impact hammer B&K 8202 with load cell B&K 
8200. 
To attain a free-free state, each beam sample was hung by two silicon ropes, Figure 2. The damage 
was made by a cut with a 1mm thin blade at one of the seven chosen locations. Measurements were 
done firstly on undamaged beam and then on the damaged beam with a damage of 1 mm depth. Then, 
measurements were repeated for three other nominal depths.  
The values of frequencies obtained numerically and experimentally differ less or more due to 
modeling and measurement errors that are inevitable in reality. In some way this enabled to estimate 
the robustness of the proposed technique. In reality, however, the efforts should be made to establish 
the numerical model that is the best representation of the real beam, so the better identification results 
should be obtained. Also, it was impossible to cut accurately the nominal depth of the notches using 
the ordinary saw cut. More on the topic of experimental measurements can be found in [5]. 
 
3.3. Establishment of nonlinear regression relations for natural frequencies  
The numerical frequencies fi

NU and fi
ND are then used as input data to find regression relations with 

damage parameters D = d/H and L = LD/LB. Using software STATISTICA 6.0, the best fitting results 
are obtained assuming the quadratic influence of the relative depth D and polynomial influence of the 
relative location L. 
The regression relations for the beam under consideration are found in the general form: 
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where fi
NU, i=1,2,3,4, are numerical frequencies of the undamaged beam, Table 1, and k=4,5,6,7 for 

i=1,2,3,4 respectivelly. The ai and bij are regression coefficients obtained using the Nonlinear 
Estimation option. 
3.4. Adopted identification functional  
The estimation of damage location and depth was obtained by finding the minimum of the functional 
FUN(D,L), which is defined as: 
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where EU
if and ED

if are the ith-natural frequencies of undamaged and damaged beam obtained 
experimentally. The proposed functional is similar to that given in [6], which is based on the 
assumption that the ratio � �L,Df/f iR

NU
i  is close to the ED

i
EU
i f/f .  The minimum was searched inside 

the bounds for D (from 0 to 0.5) and L (from 0 to 0.5), which were adopted during numerical analysis. 
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3.5. Example of obtaining the location and depth of a damage  
Here are the results of damage identification for the beam sample with LD=110 mm (with Lreal=0.275). 
The frequencies obtained numerically and experimentally for the undamaged beam sample and the 
beam sample after damaging at Lreal=0.275 with four values of damage depth are given in Table 1.  
 
Table 1. Frequencies of the undamaged and damaged beam (damage scenario with Lreal=0.275) 

Frequencies of 
the undamaged beam 

Experimental frequencies of 
the beam damaged at Lreal=0.275 

Numerical Experimental Dreal=0.125 Dreal=0.25 Dreal=0.375 Dreal=0.5 
NU

1f =264.2195 EU
1f = 259.875     ED

1f = 259.375 ED
1f = 258.875 ED

1f = 256.75 ED
1f = 252.875 

NU
2f = 737.647 EU

2f = 727.75      ED
2f = 723.75 ED

2f = 718.38    ED
2f = 703.5 ED

2f = 678.75 
NU
3f =1416.678 EU

3f = 1398.63     ED
3f = 1392.75 ED

3f = 1390.6 ED
3f = 1374.15  ED

3f = 1353 
NU
4f =2354.085 EU

4f = 2336       ED
4f = 2326 ED

4f = 2330 ED
4f = 2334.5 ED

4f = 2329 
 

a) Real damage parameters: Dreal=0.125, Lreal=0.275    Estimated parameters: Dest 0.137384, 
Lest 0.276588 
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b) Real damage parameters: Dreal =0.25, Lreal =0.275    Estimated parameters: Dest=0.207041, 
Lest=0.271706 
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c) Real damage parameters: Dreal =0.375, Lreal =0.275    Estimated parameters: Dest=0.33995, 
Lest=0.272916 
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d) Real damage parameters: Dreal =0.5, Lreal =0.275    Estimated parameters: Dest=0.484451, 
Lest=0.277714 
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Figure 3. Graphical presentations of functional in two views and the zoomed area of functional 
minimum around the Lest and Dest for the numerical case Lreal=0.275 and four depths of the damage 
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Using the calculated and measured frequencies, the minimum of the identification functional 
FUN(D,L) was found in software Mathematica 5.1. Figure 3 shows the results of damage 
identification i.e. the numerical values of Lest and Dest obtained by use of FindMin option in 
Mathematica 5.1 for the beam sample with Lreal=0.275 and four depths of the damage. There are also 
graphical presentations of the functional in two views and the zoomed area of the functional minimum 
around the Lest and Dest. 
 
4. THE RESULTS OF DAMAGE IDENTIFICATION 
The identification procedure explained in chapter 3 was done for all 28 cases of damaged states (7 
locations by 4 depths) and the results of damage identification are shown in Fig. 4. 
For four cases that refers to the location of Lreal=0.05, the Mathematica software couldn’t find the 
accurate numerical values of Dest and Lest for the functional minimum but using the appropriate 
zoomed views, the characteristic values of Dest and Lest have been defined approximately.  
The identification results on Figure 4 show that, despite all modeling and measuring errors, the results 
of the used identification technique are quite accurate. 
 

a) REAL AND ESTIMATED DAMAGES FOR RELATIVE DAMAGE DEPTH D=0.125
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c) REAL AND ESTIMATED DAMAGES FOR RELATIVE DAMAGE DEPTH D=0.375
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d) REAL AND ESTIMATED DAMAGES FOR RELATIVE DAMAGE DEPTH D=0.5
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Figure 4. Damage identification results for all 28 damage scenarios 
 
5. CONCLUSIONS 
The present paper shows the damage identification technique based on numerical, regression and 
experimental values of bending frequencies.  
Although the accuracy of the technique depends on many factors, such as the quality of numerical 
model, estimation of regression relationships, quality of frequency measurements, the results of 
identification are quite satisfactory.  
The identification results could be improved using better mesh refinement and higher number of 
numerical calculations which would provide better base for establishing the regression relations.  
It would be interesting to explore if the presented method could be used in beams of different cross-
sections or using natural frequencies of other types of vibrating modes. 
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