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ABSTRACT 
The computational model for the simulation of freezing of supercooled water is presented. The model 

is based on the mesoscopic scale approach combining the analytical solution for the dendrite growth 

at small scales with the numerical solution for the temperature at larger scales. It utilizes the 

interface capturing methodology based on phase-field which is implemented in the open-source 

software OpenFOAM. The capability of the model is verified by computing cases of freezing of 

supercooled water at different initial supercoolings. 
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1. INTRODUCTION 

In order to simulate dendritic ice growth morphology in water freezing, a problem of a large 

difference in length scales must be approached. The ice growing into the supercooled water consists 

of the primary dendrites on which secondary dendritic tips evolve on a microscopic scale. During the 

ice growth in the melt a mushy zone is developed on a macroscopic scale. Due to the large length-

scale discrepancy computing of all the details of the solidification on the microscopic scale would 

require a computational effort that is beyond the widely available computer power. To overcome this 

problem a model was presented in [1] based on defining an intermediate mesoscopic scale in the 

mushy region. Such a model enables to determine the propagation of the grain front formed by 

virtually connecting the tips of the evolving dendrites without resolving the structures within the 

grain. The main idea is to combine the numerical solution of the heat diffusion equation on this 

mesoscopic scale, with a local analytical solution for growth of a dendrite tip at the small length scale. 

The analytical solution is matched with the computationally obtained temperature field outside the 

grain at a small distance from the grain surface, called the stagnant-film thickness [1]. 

 

2. COMPUTATIONAL MODEL 

The basics of the mesoscopic modeling was used in [1, 2] for the solidification of a pure supercooled 

liquid and a binary alloy. The analytical solution for the tip velocity is integrated into the model by 

using the value for the supercooling obtained from the numerical solution for the temperature on the 

larger mesoscopic scale. The grain iso-surface connects the tips of the dendrites and is a mixture 

consisting of the ice dendrites and water. The iso-surface is at the temperature of freezing and the 

grain grows into the supercooled water due to release of the latent heat of freezing. The analytical 

solution for the tip velocity, the so-called stagnant film solution, is coupled to the selection criterion 

for the radius of the dendrite tip to enable the calculation of both, the tip velocity and its radius, 

depending on the supercooling ΔT. The supercooling obtained from the numerical solution for the 

heat diffusion at a small thickness f around the grain is supplied into the analytical solution 
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where E1 is the exponential integral function. The dendrite tip radius is expressed from the selection 

criterion as a function of Pe number and eliminated from the analytical solution to obtain an 

expression of the form ΔT=f(Pe) that is numerically solved to calculate the dendrite tip velocity 

corresponding to the supercooling at the distance f from the grain. The grain front is numerically 

propagated with the normal velocity by using the phase-field approach [3]. The interface between the 

ice grain and the surrounding water is replaced by a thin transitional region over which the indicator 

variable ϕ smoothly changes from 1 to 0. The evolution of the grain is obtained from the equation 
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where vn is the dendrite tip velocity. The supercooling ΔT is obtained from the values for the 

temperature evaluated at the points at the confocal envelope, determined from the numerical solution 

of the energy diffusion equation around the grain 
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The change of ϕ from 1 to 0 near the grain front is defined as the hyperbolic tangent profile. The 

characteristic width w is calculated as 2w d , where d is the spacing between two adjacent cell 

centers in the numerical mesh. The iso-surface of the grain envelope is defined as ϕenv = 0.95. The 

solution of the model starts by calculating the position xce of the confocal envelope around the grain. 

Then, the supercooling is determined from the value for the temperature at the confocal envelope Tce. 

The propagation velocity of the grain front is obtained by solving the analytical stagnant film model, 

Eq. (1), and the new position of the grain front is calculated explicitly from Eq. (2). Finally, the 

temperature field around the grain is obtained from the numerical solution of Eq. (3) by using the 

finite-volume solution, from which the temperature at the confocal envelope Tce is determined. The 

model is implemented in the open-source software OpenFOAM® [4]. The stabilization factor b in 

Eq.(2) affects the accuracy of the phase-field interface capturing and can be set up to the stability limit 

depending on the time step size and the mesh resolution [2]. The time step size is self-adjusted during 

the simulation and the parametar b is set as a fraction of the limiting value [3]. The propagation 

velocity of the grain front vn is determined in all the mesh-cells within the transition region 

0.01<ϕ<0.99. The mesh-cells are generally not aligned with different normal directions and the 

velocities vn must be determined at every cell-center within the transitional band. To apply the proper 

supercooling from the confocal envelope to each cell within the band, the exact locations of the points 

xce at the confocal envelope are determined by using the interface reconstruction procedure [3]. Once 

xce is found, the cell Pce is found within which each point xce is located. The temperature at the 

confocal envelope is then explicitly calculated by using the temperature gradient obtained from the 

numerical solution as     ce Pce ce Pce PceT T Tx x . Finally, the values for the local supercooling are 

determined as ΔT=Tm-Tce. For the calculation of the exponential integral function E1(x), the expression 

provided in [5] is used. For the numerical solution of Eq. (3), the icing temperature Tm is explicitly set 

in the cells within the grain, as well as at the immersed points which are used to add the contribution 

to the source term and the diagonal coefficients in the finite-volume solution matrix. 

 

3. RESULTS 

For the verification of the model, freezing is computed for two initial supercoolings: ΔT=3 and 5 K. 

The two-dimensional computational domain shown in Fig. 1 has dimensions of 11 mm discretized 

by 100100 cells. At the initial time the spherical ice nucleus has a radius R>6w to ensure smooth 

enough initial transition of the phase-field. Uniform temperature corresponding to the initial 

supercooling is set everywhere with zero-gradient boundary condition for the heat diffusion, reflecting 

adiabatic boundaries. Uniform properties of the supercooled water are listed in Table 1. 
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Figure 1. Sketch of the computational domain. 
 

Special care is given to the choice of the stagnant-film thickness f as the input parameter, which is 

related to the value of the tip radius Rtip. Since the tip radius itself is a part of the analytical solution, it 

is difficult to choose the correct value in advance. The film thickness is scaled with the diffusion 

length scale ldiff in [2], where it was shown that the grain tip velocity approaches the theoretical value 

if f is approximately of the same order of magnitude as ldiff. When f is set sufficiently small, the local 

supercooling at the confocal envelope is not uniform and the grain tip velocities are varying and 

produce the characteristic grain shape. The best results for the grain shape are obtained by using f /ldiff 

0.5. In the case of freezing, the thermal diffusion length is estimated as lt=α/vtip, where vtip is the 

velocity of the primary dendrite tip. Thus, the physical meaning of the stagnant film thickness is the 

thickness of the diffusion boundary layer around the grain surface. For the estimation of lt the 

experimental values for icing front velocities from [6] are used, and the obtained lt  is equal to 

9.87224·10
-5

 m at 3 K and 3.38157·10
-5

 m at 5 K. The results for the grain evolution at various time 

instants for the two initial supercoolings are shown in Fig. 2. 

 

 t=0.1 s  t=0.05 s 

 t=0.2 s  t=0.07 s 

Figure 2. The computed grain evolution and the temperature distribution for ΔT=3 K, f /lt=0.5 (left) 

and for ΔT=5 K, f /lt =1.3 (right). 

 

As can be seen in the figure, the results are different for different initial supercooling, whereby the 

grain evolves much faster for higher initial supercooling. It is further observed that the results are 

different when different values for f /lt are applied in the same numerical case. As expected, the 

model is sensitive to the thickness f, which must be properly set for each specific case. The 

difference in the obtained results is further highlighted in the case with a higher value for f/lt=1.3. 

The result showing the distribution of the supercooling at the grain iso-surface is shown in Fig. 3. It is 

  Table 1. Thermophysical properties for water. 

density , kg/m3 998.84 

heat conductivity k, W/(mK) 0.562 

specific heat cp, J/(kgK) 4219 

latent heat of freezing L, J/kg  333000 

surface tension sl, N/m 0.028 

thermal diffusivity , m2/s 1.3322810−7 
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seen that the supercooling is not constant at the grain surface, being the greatest at the primary grain 

tips, and the supercooling decreases in time. The model potential is examined quantitatively with 

respect to the results for the grain width. It was previously found in [1] that the dimensionless grain 

width scales with the dimensionless distance from the grain tip, revealing a universal power law  

 

 / /
n

tip tipx R A y R    ... (4) 

 

where x is the half-width of the grain measured from the axis of symmetry and y is the distance from 

the grain tip to the center of the grain. The coefficients in Eq. (4) obtained in [1] are A=0.668 and 

n=0.859. Fig. 3 shows the computed dimensionless grain half-width for ΔT=5 K, f /lt=1.3 at 

t = 0.07 s. The computed results scale well with the power scaling law, Eq. (4), with the 

corresponding coefficients A=4.21 and n=0.63, thereby showing that the model is capable of 

predicting the power-law shape of the iso-surface of the ice grain. 

 

  
Figure 3. The computed grain evolution and the supercooling for ΔT=5 K, f /lt=1.3 (left) and the 

computed dimensionless grain half-width for ΔT=5 K, f /lt=1.3 at t=0.07 s (right). 

 

4. CONCLUSIONS 

The computational model for the computation of solidification of supercooled water is presented. The 

model utilizes the intermediate mesoscopic scale to avoid high computational costs. It combines the 

analytical solution for the dendrite growth at smallest scales with the numerical solution for the 

temperature field at larger scales. It is based on the phase-field interface capturing with imposed 

boundary conditions in the interface points. The model is tested and verified by computing freezing of 

supercooled water at different initial values for the supercooling. 
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