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ABSTRACT 
The paper deals with a numerical method for the kinematic analysis of the McPherson guiding 

mechanisms of the vehicle rear wheels with independent suspension. The kinematics of the mechanism 

is modeled by a non-linear system of 8 equations, regardless of the complexity of the mechanism in 

terms of number of elements, which is then solved by using the Newton-Kantorovich approach. A 

computer program was developed and tested on various McPherson suspension configurations. 
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1. INTRODUCTION 

The independent guidance of the rear wheels of the passenger cars is achieved by means of a 

suspension mechanism for each wheel. Compared to the guidance of the beam axle, the following 

advantages are ensured through wheel independent guidance: less allocated space, reduced weight, 

there is no mutual influence of the wheels, increased comfort. For the nowadays cars, the multi-link 

suspension configurations are frequently used. The McPherson design is a special type of suspension, 

at which the shock absorbers are integrated in the structural & kinematic model (with influence on the 

kinematic behavior), unlike the conventional multi-link mechanisms where the shock absorbers only 

play the role of damping elements (thus being neglected in the kinematic analysis) [1]. 

The kinematic analysis of the wheel guiding mechanisms can be done by using automated formalisms, 

such as incorporated into the commercial MBS (Multi-Body Systems) software environment (e.g. 

ADAMS of MSC Software), which automatically formulate and solve the motion equation systems in 

accordance with the specific types of constraints between bodies [2, 3], or classical methods, which 

consist of the analytical modeling of the kinematic behavior, usually by geometrical or vectorial 

methods [4, 5, 6]. Having in view the reduced complexity of the kinematic model (as result of the 

specific simplifying assumptions), the study can be approached by classical methods, with the benefit 

of customizing the computing programs. 

 

2. KINEMATIC ANALYSIS ALGORITHM 

The general form of the rear wheel suspension mechanism is that corresponding to the spatial 

guidance of a body on five fixed spheres having the centers on car body (fig. 1). The degree of 

mobility of the mechanism can be computed in accordance with the number of joints mobilities  

(mi), the motion space (s), and the number of independent kinematic loops (k), as follows: 

 

 DOM = mi - S k = 30 - 64 = 6 = 1 + 5, (1) 

 

the five rotations of the guiding links around their own axes being passive from kinematic point of 

view. Therefore, the general multi-link wheel guiding mechanism has one active degree of mobility, 

which corresponds to the vertical travel (up-down) of the wheel.  
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By structural and constructive customizations of the general multi-link mechanism shown in figure 1, 

several variants of wheel guiding mechanisms can be defined, one of the most used mechanism being 

the  McPherson design (fig. 2), which is obtained by replacing the set on upper links (3-3’) and their 

corresponding spherical joints with a tetra-mobile joint, thus materializing a cylinder (2 - common 

part with the wheel carrier) & piston (3) assembly (i.e. the shock absorber / damper). 

 

Figure 1. Multi-link wheel guiding mechanism. 

 
Figure 2. McPherson guiding mechanism.  

 

The geometric model of the McPherson wheel guiding mechanism is defined by the following 

parameters (fig. 3): 

 the coordinates of the points M0i (i=1...3) and N0 in which the guiding bars are connected to car 

body, in the global reference frame OXYZ attached to car body: XM0i, YM0i, ZM0i; XN0, YN0, ZN0; 

 the coordinates of the spherical joints Mi (i=1...3) by which the guiding bars are connected to 

wheel carrier, in the local reference frame PXPYPZP attached to wheel carrier: XMi(P), YMi(P), ZMi(P); 

 the orientation angles of the damper axis () in PXPYPZP: (P), (P); 

 the static (initial) position of the wheel carrier, in OXYZ: XP
0
, YP

0
, ZP

0
. 

 

 

Figure 3. The geometric model of the McPherson guiding mechanism. 

 

The global reference frame OXYZ has the axes parallel with the longitudinal (X), transversal (Y) and 

vertical (Z) technological axes of the vehicle, while the wheel reference frame PXPYPZP has the origin 

P in the centre of the spindle axis YP. 
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The spatial motion of the wheel carrier is completely determined by its three non-collinear points, 

here called characteristic points. By the proposed method, the three points are the wheel center Gs and 

the projections Gd - G of the lower guiding point M1 on the local axes YP - ZP. The kinematic 

modeling of the mechanism is based on the rigid body conditions for wheel carrier (which are 

expressed by constant distances between the three characteristic points, F1-F3), as well as the 

constraint equations (the points through which the wheel carrier is guided in the relative motion to car 

body to describe specific geometric shapes, F4-F8), as follows: 

 

F1 = (XG - XGd)
2
 + (YG - YGd)

2
 + (ZG - ZGd)

2
 - GGd

2
 = 0, 

F2 = (XG - XGs)
2
 + (YG - YGs)

2
 + (ZG - ZGs)

2
 - GGs

2
 = 0, 

F3 = (XGd - XGs)
2
 + (YGd - YGs)

2
 + (ZGd - ZGs)

2
 - GdGs

2 
= 0,             

 F4 = (XM1 - XM01)
2
 + (YM1 - YM01)

2
 + (ZM1 - ZM01)

2
 - l1

2
 = 0, (2) 

F5 = (XM2 - XM02)
2
 + (YM2 - YM02)

2
 + (ZM2 - ZM02)

2
 - l2

2
 = 0, 

F6 = (XM3 - XM03)
2
 + (YM3 - YM03)

2
 + (ZM3 - ZM03)

2
 - l3

2
 = 0, 

F7 = (XN0 - XN)·Y - (YN0 - YN)·X = 0, 

F8 = (YN0 - YN)·Z - (ZN0 - ZN)·Y = 0, 

 

where X, Y, Z are the global components (in OXYZ) of the damper axis vector,  
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M40 being the matrix that defines the orientation of the wheel carrier frame relative to OXYZ.  

The unknowns that will be determined through the kinematic analysis are the global coordinates (in 

OXYZ) of the characteristic points, excepting the vertical coordinate of the wheel center ZGs which is 

the independent kinematic parameter, in accordance the number of degrees of mobilities of the 

mechanism, defined by equation (1). In the first three equations (F1-F3), the unknowns appear 

explicitly, while the following five equations (F4-F8) they appear as being implicit through the global 

coordinates of the guiding points: 
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 (4)   

 

where M can be any of the guiding points M1, M2, M3, or N, mij (i, j=1...3) are the components of the 

connection matrix M40 (the director cosines), while the coordinates of the center P are determined 

from the intersection of the spindle axis GsGd with the plane normal to GsGd taken through G. 

The non-linear system (2) is solved by using the Newton-Kantorovici approach. The solution starts 

from the neutral position of the mechanism (vehicle in rest), for which the initial solution of the 

system can be can be accurately established. The solving involves the following steps: (a) setting the 

initial solution; (b) computing the coordinates of the wheel carrier center and of the wheel guiding 

points; (c) establishing the Jacobian of the system by derivating the functions F1-F8; (d) determining 

the new solution (in the first iteration), by using the Gauss-Jordan method; (e) testing the obtained 

error (the differences between the values of the unknown parameters in the first '1' and initial '0' 

iterations) - if the errors are satisfactory, then '1' is retained as new solution, otherwise the iterative 

process resumes from step (b), assuming as the initial solution in the new iteration the values of the 

unknowns from the previous iteration. The iterative process is finished when the difference between 

the values of the eight unknowns in two successive iterations 'm-1' şi ' m' reaches the imposed 

accuracy, the final solution being {XG, YG, ZG, XGs, YGs, XGd, YGd, ZGd}m. For a current position of the 

wheel guiding mechanism, the non-linear system is solved in similar way, considering as initial 

solution the known prior position of the mechanism. 

Thus, the measures that define the kinematic behavior of the mechanism can be defined, as follows (fig. 4): 
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  the orientation angles of the spindle axis, and their 

variations: toe angle  (the symmetric angle that each 

wheel makes with the longitudinal axis of the vehicle), 

and camber angle  (the angle between the vertical axis 

of the wheels and the corresponding axis of the vehicle): 
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Figure 4. The spindle axis orientation angles. 

  the wheel track (E) and wheelbase (L) variations - the displacements of the contact point K 

between wheel and road in transversal (Y) and longitudinal (X) directions: 

 

 E = YK – (YK)0 , L = XK – (XK)0, (6) 

 

where the coordinates of the contact point K are obtained from the intersection of the vertical plane 

taht contains the spindle axis with the plane perpendicular on the spindle axis that passes through Gs, 

and the sphere with center in Gs and radius GsK. 

 

3. RESULTS AND CONCLUSIONS 

Based on the above presented method, a computer 

program was developed by using the programming 

language C++. The program was tested on various types 

of guiding mechanism and kinematic regimes. For 

example, figure 5 shows the variations of the toe and 

camber angles when the wheel passes over a sinusoidal 

bump with the amplitude of 80 mm (ZGs[-80, 80] mm). 

By comparison with other existing methods, the 

algorithm presented above brings important advantages, 

such as the large applicability field, the fast convergence 

of the non-linear systems, the accurate selection of the 

initial solution. For a further work, the author intends to 

integrate the method in a more complex algorithm for 

the kinetostatic analysis of the McPherson suspension. 

 

Figure 5. Toe & camber angle variations. 
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