ASPECTS OF DECISION-MAKING IN THE MANAGEMENT OF THE LIFE CYCLE OF VEHICLES IN PUBLIC TRANSPORT

PhD Jusuf Borić, dipl. ing.
Centrotrans-eurolines, Sarajevo
Bosnia and Herzegovina

PhD Fuad Klisura, dipl. ing.
IPI – Institut za privredni inženjering, Zenica,
Bosnia and Herzegovina

Prof. PhD Mustafa Mehanović
Fakultet za saobraćaj i komunikacije,
Sarajevo, Bosnia and Herzegovina

PhD Dragana Agić, dipl.iure
IPI – Institut za privredni inženjering, Zenica,
Bosnia and Herzegovina

ABSTRACT
The proposed model pointed out the need of optimal choice of vehicle fleet, to define optimal ways of maintaining and method for determining a vehicle's lifetime, or time write-off in terms of cost of ownership and maintenance of vehicles. This paper presents a procedure of assessing the impact of the applied management methods.

Key words: The Life cycle, Passenger Transport, Maintenance, Write-off Vehicles, Ownership of Vehicles, Management, Valorization of method

1. INTRODUCTION
The task of a vehicle fleet in public transport is to move passengers from one place to another. Such a task can be successfully and reliably achieved by the fleet if it has sufficient number of technically correct vehicles with a long life cycle and acceptable maintenance costs. The vehicle in the inventory vehicle fleets causes costs for the owner. These costs can be divided into: 1. the costs of the acquisition (write off) and 2. the maintenance costs of the vehicle.

The first item is the largest component, which is about 40-60% of the total cost, which is the main reason for the wide variation in the price of transport. Vehicle type, maintenance mode, vehicle age and other factors affect the level of vehicle participation. The age structure of the vehicle fleet is an important data for assessing the reliability and the need for the maintenance of the transport system.

2. HYPOTHETICAL ASPECTS OF MODELS
The set goals and selected approaches for solving the problems of managing the life of fleets have determined several basic hypothetical starting points of the model:
1) The costs of the vehicle fleet are in the function of monetary and non-monetary factors which if are optimally managed can assure and improve the return on investment.
2) The optimum costs of transport services in public transport are determined by optimizing vehicle purchases, optimizing vehicle residual value up to the time of replacement, minimizing the level of parts stock.
3) The optimization of the route of public transport lines significantly affects the costs of the transport service.
4) The application of new maintenance technologies contributes to improving the efficiency of the fleet management life cycle.

3. VEHICLE LIFE CYCLE MANAGAMENT IN PUBLIC TRANSPORT
Vehicle life cycle management is consisted of three components: Procurement of a vehicle, Exploitation and maintenance, Disposal and replacement.
Vehicle procurement
Knowing the operational processes and requirements of the company, it is necessary, above all to:
Analyse real needs (fleet size, vehicle types ...), Analyse the choice of vehicle type and model,
Analyse the selection of the appropriate financing, Plan the disposal of vehicles, etc.

Exploitation and maintenance
Establishing a good maintenance plan reduces downtime and increases the value of the vehicle at
every point of disposal.
By use of intelligent transport systems are created conditions for the vehicle monitoring during the
exploitation at any time, and through a series of sensors connected to board diagnostics it is possible
to monitor certain systems on the vehicle (engine temperature, fuel consumption, engine speed, etc.).
In this way are created conditions for quality preventive maintenance and corrective maintenance is
reduced.

Disposing and replacing vehicles
When making a decision, the following factors should be considered: Financial, Non-financial, Non-
qualitative factors (eg company image, employee morale, employee retention, and security).
In today's conditions of the labor market, retaining employees, morale and attracting new employees
with newer more comfortable vehicles is not unusual.

3.1 Costs of ownership
When replacing a vehicle, there is often a mistake in thinking that "once purchased property which
is totally weakened is not a cost for ownership." In Picture 1. is presented a general example of the
relationship between the costs of ownership and maintenance of vehicles of the purchase value of
30000 (KM). From the given graphics it can be concluded that the replacement of the vehicle
should be done after 4 years of ownership.

3.2 Exploitation and maintenance costs
Valorization of the effects of applying the model for the selection and maintenance of vehicles in
public transport is possible by using the form for calculating the total transport costs, which we
calculate as a sum of all costs (fuel, lubricants, tires, repairs and maintenance, depreciation, wages,
interest expenses, administration, insurance costs, registration fees and other costs).

\[T_{v} = \sum T_{g} + T_{w} + T_{l} + T_{a} + T_{d} + T_{k} + T_{l} + T_{d} + T_{w} + T_{o} + T_{k} + T_{l} + T_{o} \]

Costing is a compilation of spending elements to obtain the cost of goods and services. Costs are
calculated from the need to manage the enterprise.

3.3 Total costs of owning and maintaining the vehicle
The costs presented in Table 1. include vehicle ownership and vehicle maintenance costs, based on
which the justification of vehicle replacement with correction due to exploitation conditions can be
assessed.
Table 1. Owning and maintaining vehicle costs in public transport per unit

<table>
<thead>
<tr>
<th>Corrected costs per unit</th>
<th>[KM/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owning costs</td>
<td></td>
</tr>
<tr>
<td>Costs of amortization</td>
<td>0.2895</td>
</tr>
<tr>
<td>Ensurance costs</td>
<td>0.0274</td>
</tr>
<tr>
<td>Registrations costs</td>
<td>0.0253</td>
</tr>
<tr>
<td>Maintaining costs</td>
<td></td>
</tr>
<tr>
<td>Tire costs</td>
<td>0.0356</td>
</tr>
<tr>
<td>Costs of maintainance and repair services</td>
<td>0.6410</td>
</tr>
</tbody>
</table>

| 0.3422 |

3.4 An example of vehicle selection

For the Zenicatrans carrier, variants of vehicle purchasing from the aspect of vehicle life cycle were analysed. Two cases of procurement with four variants (offers) were observed. In the first case, it is about new vehicles, and in the second case about used vehicles. The variants are labeled V1, V2, V3 and V4 in both cases.

Table 2. presents the selected metric for the multi-criteria ranking of the offered variants. The weights of the criteria were determined expertly in the range from 1 to 10 and can be adjusted to each specific case.

Table 2. Criteria for the selection of vehicle in public transport

<table>
<thead>
<tr>
<th>Code</th>
<th>Type of criteria</th>
<th>Unit</th>
<th>How much the criteria satisfy (MIN ili MAX)</th>
<th>Importance of criteria (from 1 to 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Number of sitting and standing seats</td>
<td>seats</td>
<td>maksimum</td>
<td>7,00</td>
</tr>
<tr>
<td>002</td>
<td>Year of manufacture (can be eliminatory)</td>
<td>year</td>
<td>minimum</td>
<td>8,00</td>
</tr>
<tr>
<td>003</td>
<td>Engine power</td>
<td>kW</td>
<td>maksimum</td>
<td>8,00</td>
</tr>
<tr>
<td>004</td>
<td>Mileage passed.</td>
<td>km</td>
<td>minimum</td>
<td>7,00</td>
</tr>
<tr>
<td>005</td>
<td>Vehicle ownership costs within 1 year after purchase</td>
<td>KM/hr</td>
<td>minimum</td>
<td>9,00</td>
</tr>
<tr>
<td>006</td>
<td>Vehicle maintenance costs within 1 year after purchase</td>
<td>KM/hr</td>
<td>minimum</td>
<td>9,00</td>
</tr>
<tr>
<td>007</td>
<td>Assessment of vehicle condition</td>
<td>maksimum</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Noise</td>
<td>dB</td>
<td>minimum</td>
<td>6,00</td>
</tr>
<tr>
<td>009</td>
<td>EURO engine (1,2,3,4,5,6)</td>
<td>maksimum</td>
<td>7,00</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Vehicle price (KM)</td>
<td>KM</td>
<td>minimum</td>
<td>9,00</td>
</tr>
<tr>
<td>011</td>
<td>Transport costs to the carrier (contracting authority)</td>
<td>KM</td>
<td>minimum</td>
<td>9,00</td>
</tr>
<tr>
<td>012</td>
<td>Method of payment</td>
<td>month</td>
<td>maksimum</td>
<td>8,00</td>
</tr>
</tbody>
</table>

3.5 Optimazing the life cycle of public transport

The optimization of the life cycle of vehicles in the fleet for public transport was carried out on the basis of the costs of owning and maintaining the vehicles, and in accordance with the cost model in point 3.1. For this purpose an analysis of the collected data of the company Zenicatrans Zenica for the...
period 2012-2015 was carried out. Ownership costs include amortization, road charges, registration and other fixed costs per vehicle. Maintenance costs include the costs of parts, materials and energy, as well as labor costs.

Since the age structure of the vehicle fleet is very unfavorable, maintenance did not have any continuity in all vehicles. The maintenance of a large number of vehicles was based on the principle of "drive to failure". For the optimization of the life cycle analysis, 6 vehicles have been separated, which were maintained mainly before the failure occurred in the period 2012-2015. The cost of owning the selected vehicles at the beginning of the observed period was approximately 30000 (KM).

The total costs of the selected 6 vehicles can be replaced by the average values and by the method of the smallest squares determine the polynomial approximation function with negligible error, Picture 3.

For the specified vehicle group, the optimum replacement time is obtained at the point of minimum of the function y, and depending on the number of years x. This is obtained from the conditions

\[
\frac{dy}{dx} = 0
\]

\[
\frac{d(1065x^3 - 5748.9x^2 + 9084.7x + 24091)}{dx} = 0
\]

\[
3 \cdot 1065 \cdot x^2 - 2 \cdot 5748.9 \cdot x + 9084.7 = 0
\]

\[x = 2.427 \text{ (year)}\]

Thus, the 6 vehicles observed, according to the included costs, should have been optimally replaced after the 5th month of 2014.

4. CONCLUSION

Based on the results of the complete survey, it can be concluded that the optimization of the management of the cost of the life cycle of the vehicle fleet significantly improves the conditions for the return of investments in the company for the transport of passengers.

Based on the above, it can be concluded that this research will have the full meaning of applying this model to enable optimal solutions for the maintenance of a fleet in the public transport and can serve as an example of the scientific solution of key problems in the technological process of production of transport services.

5. REFERENCES